CHARACTERIZATION OF HIGH T_c MATERIALS AND DEVICES
BY ELECTRON MICROSCOPY

Edited by

NIGEL D. BROWNING
University of Illinois at Chicago

STEPHEN J. PENNYCOOK
Oak Ridge National Laboratory, Tennessee
Contents

List of contributors x

Preface xiii

1 High-resolution transmission electron microscopy (by S. Horiuchi and L. He) 1
1.1 Introduction 1
1.2 Theoretical background for HRTEM 1
1.3 Techniques relevant to HRTEM 9
1.4 HRTEM analysis of high T_c superconductors 10
References 20

2 Holography in the transmission electron microscope (by A. Tonomura) 23
2.1 Introduction 23
2.2 Electron holography 24
2.3 Applications 26
2.4 Conclusions 35
References 36

3 Microanalysis by scanning transmission electron microscopy (by L. M. Brown and J. Yuan) 39
3.1 Introduction 39
3.2 Electron optics of STEM 39
3.3 Imaging in STEM 47
3.4 Microanalysis in STEM 50
3.5 X-ray fluorescence spectroscopy 57
3.6 Microdiffraction 59
3.7 Resolution attainable in analysis 59
Contents

7 *Identification of new superconducting compounds by electron microscopy* (by G. Van Tendeloo and T. Krekels) 161

7.1 Introduction 161
7.2 Oxygen vacancy order in the CuO plane of YBa$_2$Cu$_3$O$_{7-\delta}$ 161
7.3 Oxygen ordering and Ba-displacements in the YBCO-247 compound 175
7.4 Oxygen vacancy ordering in Y$_N$Sr$_2$MCu$_2$O$_{5+2n\pm x}$ compounds (M = Co, Ga, Al) 178
7.5 New Hg-based superconducting materials 182
References 189

8 *Valence band electron energy loss spectroscopy (EELS) of oxide superconductors* (by Y. Y. Wang and V. P. Dravid) 193

8.1 Introduction 193
8.2 Experimental 195
8.3 Anisotropic dielectric function of cuprates 196
8.4 Momentum-transfer (q) resolved electron energy loss spectroscopy 201
8.5 Conclusions 212
References 213

9 *Investigation of charge distribution in Bi$_2$Sr$_2$CaCu$_2$O$_8$ and YBa$_2$Cu$_3$O$_7$* (by Y. Zhu) 215

9.1 Introduction 215
9.2 Bi$_2$Sr$_2$CaCu$_2$O$_8$ 217
9.3 YBa$_2$Cu$_3$O$_7$ 225
9.4 Conclusions 232
References 232

10 *Grain boundaries in high T_c materials: transport properties and structure* (by K. L. Merkle, Y. Gao and B. V. Vuchic) 235

10.1 Introduction 235
10.2 Grain boundary structure 237
10.3 Oxide grain boundaries 243
10.4 Grain boundaries in YBCO 247
10.5 Direct correlation between grain boundary structure and electric transport properties 254
10.6 Discussion 258
10.7 Summary and conclusions 260
References 261
11 The atomic structure and carrier concentration at grain boundaries in $YBa_2Cu_3O_{7-\delta}$ (by N. D. Browning, M. F. Chisholm and S. J. Pennycook) 263
11.1 Introduction 263
11.2 Imaging and microanalysis of boundary structures 263
11.3 Structural models 270
11.4 Predicting bulk structure–property relationships 275
11.5 Conclusions 281
References 283

12 Microstructures in superconducting $YBa_2Cu_3O_7$ thin films (by A. F. Marshall) 285
12.1 Introduction 285
12.2 Grain boundaries 285
12.3 Boundary microstructures and facetting 293
12.4 Stacking faults and antiphase boundaries 299
12.5 Aligned a-axis films 300
12.6 Synthesis and properties 303
12.7 Single grain boundaries 309
12.8 Summary 316
References 317

13 Investigations on the microstructure of $YBa_2Cu_3O_7$ thin-film edge Josephson junctions by high-resolution electron microscopy (by C. L. Jia and K. Urban) 319
13.1 Introduction 319
13.2 Experimental 320
13.3 Microstructure of $YBa_2Cu_3O_7$ 320
13.4 Interfaces in $YBa_2Cu_3O_7$ multilayer edge junctions 337
13.5 Summary 353
References 353

14 Controlling the structure and properties of high T_c thin-film devices (by E. Olsson) 355
14.1 Introduction 355
14.2 Single-layer films 356
14.3 Buffer layers 361
14.4 Mechanical interactions 363
14.5 Grain boundaries 367
14.6 Patterned and modified surfaces 378
Contents

14.7 Multilayer structures 380
14.8 SNS Josephson junctions 383
14.9 Other orientations 385
14.10 Other layered high T_c superconductors 387
14.11 Conclusions 388
References 389