Photosynthetic EXCITONS

Herbert van Amerongen
Vrije Universiteit, The Netherlands

Leonas Valkunas
Institute of Physics, Lithuania

Rienk van Grondelle
Vrije Universiteit, The Netherlands
Contents

Preface v

Chapter 1. Introduction: Structural Organization, Spectral Properties and Excitation Energy Transfer in Photosynthesis 1

1. Introduction 1
 1.1 Disordered vs. ordered light-harvesting systems 2

2. The Photosynthetic Pigments: Chlorophylls, Bacteriochlorophylls and Carotenoids 2
 2.1 The chlorophylls 3
 2.2 The bacteriochlorophylls 6
 2.3 The carotenoids 8

3. The Structure and Function of Important Photosynthetic Pigment–Protein Complexes 11
 3.1 The bacterial photosynthetic reaction center 12
 3.2 The reaction centers of Photosystem II and Photosystem I 15
 3.3 The peripheral light-harvesting complex (LH2) of photosynthetic purple bacteria 15
 3.4 The Fenna–Matthews–Olson protein of green sulphur bacteria 18
 3.5 LHCII, the major chlorophyll binding light-harvesting complex of plants 19
 3.6 The core antenna and reaction center of Photosystem I 21

4. Mechanism of Energy Transfer and Trapping in Photosynthesis 22
 4.1 The Förster equation 22
 4.2 Trapping by the reaction center 23

5. Energy Transfer in Some Photosynthetic Systems 28
 5.1 Energy transfer in the peripheral and core antennae of photosynthetic purple bacteria 28
 5.2 Energy transfer in the Fenna–Matthews–Olson complex 32
 5.3 Energy transfer in the major peripheral plant light-harvesting complex LHCII 33
 5.4 Energy transfer in Photosystem I 35

6. Conclusions 37
Chapter 7. Excitonic Interactions in Photosynthetic Systems: Spectroscopic Evidence

1. Introduction
2. Correlation of Structural and Spectroscopic Properties of Photosynthetic Reaction Centers
 2.1 The bacterial reaction center
 2.2 Polarized spectroscopy of crystals of the reaction center of Rhodopseudomonas viridis
 2.3 Calculation of the absorption spectra
 2.4 Vibronic coupling in the bacterial reaction center
 2.5 Charge-transfer states
 2.6 The multimeric exciton model for the Photosystem II reaction center
 2.7 Theoretical methods
 2.8 Exciton calculations
 2.9 Exciton delocalization and energetic disorder
 2.10 The multimer model of P680: Comparison with experiment
 2.11 “P680”
 2.12 Photosystem I
3. Excitonic Interactions in Light-Harvesting Pigment–Proteins
 3.1 LH2
 3.2 The structure of LH2 of Rhodopseudomonas acidophila and Rhodospirillum molischianum
 3.3 Spectroscopic properties of LH1 and LH2
 3.4 Calculation of the spectroscopic properties of LH2 and LH1
 3.5 Diagonal disorder and the dipole strength of the lowest exciton state of LH2
 3.6 Localization of the exciton in the presence of static and dynamic disorder
3.7 Calculation of the LH2 CD spectrum using exciton theory 285
3.8 The BChl a binding protein of green photosynthetic sulphur
bacteria (the Fenna–Matthews–Olson complex) 288
4. The Major Chl a–Chl b Light-Harvesting Complex of Green
Plants (or LHCII) 297
Appendix 7.1 Carotenoid–Chlorophyll Interactions in LHCII 304
References 305

Chapter 8. Exciton Dynamics 311
1. Introduction 311
2. Coherent vs. Incoherent Excitons 311
3. Stochastic Liouville Equation 316
4. Depolarization for a Dimer as Described by the Stochastic
Liouville Equation 323
5. Migration of Localized Excitations: The Förster Equation 329
6. Generalized Master Equation 333
7. Exciton Relaxation 337
References 344

Chapter 9. Exciton Dynamics in Different Antenna Complexes. 347
Coherence and Incoherence 347
1. Introduction 347
2. C-Phycocyanin 347
3. Allophycocyanin 352
4. Peridinin-Chlorophyll-a-Protein from Dinoflagellates 357
5. The FMO Complex from Green Bacteria 363
6. Light-Harvesting Complex II from Green Plants 372
7. Dynamics of Energy Transfer in LH1 and LH2 of
Photosynthetic Purple Bacteria 375
7.1 Energy transfer among the B800 bacteriochlorophylls in
LH2 376
7.2 B800 to B850 energy transfer 379
7.3 Energy transfer within the strongly coupled B850 ring 381
7.4 Interactions and energy transfer between carotenoid and
bacteriochlorophyll molecules of LH2 387
References 393
Chapter 10. Migration of Localized Excitons: Förster Excitation Energy Transfer and Trapping by Reaction Centers

1. Introduction 401
2. Excitation Trapping by Reaction Centers 402
 2.1 Kinetic model 404
 2.2 Average-lifetime approach 405
 2.3 Longest-decay-time approach 408
 2.4 Perturbed-two-level model 409
 2.5 Comparison of the models 412
3. Application to Bacterial Photosynthesis 415
 3.1 Local-trap approximation 416
 3.2 Perturbed two-level approximation 417
 3.3 Interpretation of the effective trapping rate 419
 3.4 Comparison to standardized models 421
4. Application to Plant Systems 424
 4.1 Excitation trapping in PSI 424
 4.2 Application to PSII 430
5. Concluding Remarks 434

Appendix 10.1 The Trap as a Local Perturbation of a Lattice 437
Appendix 10.2 The Perturbed Two-Level Model 440
Appendix 10.3 Averaged Orientation Factor in Exciton Transfer 444
References 445

Chapter 11. Excitation Energy Transfer and Trapping. Experiments 449

1. Introduction 449
2. The Bacterial PSU — Energy Transfer over the Antenna Network and Trapping by the Reaction Center 449
3. Photosystem II 453
 3.1 Organization 453
 3.2 Trapping in PSII cores 455
4. Energy Transfer Dynamics and Trapping in Intact PSII 456
5. Energy Transfer and Trapping in the Core Antenna of Photosystem I 458
 5.1 Organization and structure 459
 5.2 Steady-state spectroscopic properties 460
 5.3 Time-resolved excitation decay at room temperature 461
 5.4 Trapping in the Photosystem I core complex 462
Photosynthetic excitons

5.5 Trapping in large Photosystem I complexes 465
5.6 Excitation decay in intact Photosystem I 465
5.7 Spectral and spatial equilibration in Photosystem I 465
5.8 Energy transfer in Photosystem I at low temperatures 467

6. Concluding Remarks 470

References 472

Chapter 12. Nonlinear Annihilation of Excitons. Theory 479
1. Introduction 479
2. Annihilation in Large Aggregates 480
 2.1 Mathematical formulation of the kinetic equations 481
 2.2 Analysis of kinetic equations 483
 2.3 Nonlinear excitation quenching 485
 2.4 Quasi-linear excitation quenching 487
 2.5 Fractal model for spectrally inhomogeneous aggregates 488
3. Small Aggregates 490
 3.1 Distribution function approach 490
 3.2 Statistical approach 491
 3.3 Coherent excitons 494
4. Singlet-Triplet Annihilation 495
 4.1 Singlet excitation trapping by triplets 495
 4.2 Fluorescence induction and S–T annihilation 497
5. Local Heating During Annihilation 503
 5.1 Dissipation of vibrational-mode energy 503
 5.2 Modulation of the nuclear motion 505
6. Excitation Annihilation Studied by Pump–Probe Spectroscopy 506
 6.1 Higher excited state relaxation 507
 6.2 Excitation correlation effects 508
 6.3 Local temperature effect 509

Appendix 12.1 Kinetic Equations of the S–S Annihilation 510
Appendix 12.2 Distribution Function Approach for Three-Molecular Aggregate 516

References 519

1. Introduction 523
2. Fluorescence Quantum Yield Measurements 523
3. Annihilation Kinetics in Chromatophores 530
4. Fenna–Matthews–Olson Complex 535
5. Annihilation Kinetics in LHCII Complex 538
6. The Effect of S–T Annihilation on Fluorescence Induction in PSII 546

References 548

Chapter 14. Nonlinear Spectroscopy 551

1. Introduction 551
 1.1 Linear response 552
 1.2 Multi-wave mixing 557
 1.3 Nonlinear optical response 560
2. Response Functions in Multilevel Systems 568
3. Experiments on Energy Transfer and Electron Transfer in Photosynthesis Applying Nonlinear Femtosecond Spectroscopy 575
 3.1 The 3PEPS method 575
 3.2 3PEPS experiments on LH1 and LH2 complexes of Rhodobacter sphaeroides 578
 3.3 3PEPS experiments on the accessory pigments in the RC of Rhodobacter sphaeroides 580

Appendix 14.1 Fourier Transformation 582

References 583

Subject Index 585