Discrete Integrable Geometry and Physics

EDITED BY

Alexander I. Bobenko
and
Ruedi Seiler

Fachbereich Mathematik
Technische Universität Berlin

CLARENDON PRESS • OXFORD
1999
Contents

The colour plates were prepared by Tim Hoffmann, and can be found between pages 100 and 101.

List of contributors

<table>
<thead>
<tr>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexander I. Bobenko</td>
</tr>
<tr>
<td>Ruedi Seiler</td>
</tr>
</tbody>
</table>

I GEOMETRY

1 Discretization of Surfaces and Integrable Systems

| Alexander I. Bobenko |
| Ulrich Pinkall |

1 Introduction

2 Parametrizations of surfaces and their discretization

| 2.1 Parametrized surfaces and nets |
| 2.2 Discrete A-surfaces (asymptotic line nets) |
| 2.3 Discrete C-surfaces (curvature line nets) |

3 Discrete K-surfaces (constant negative Gaussian curvature surfaces)

| 3.1 Smooth surfaces with constant negative Gaussian curvature |
| 3.2 Discrete K-surfaces from a discrete Lax representation |
| 3.3 Gauss map of discrete K-surfaces |
| 3.4 The discrete sine-Gordon equation |
| 3.5 Construction of discrete K-surfaces |

4 Discrete H-surfaces (constant mean curvature surfaces)

| 4.1 Smooth constant mean curvature surfaces |
| 4.2 Discrete H-surfaces from a discrete Lax representation |
| 4.3 Compatibility conditions |
| 4.4 Geometric properties of discrete H-surfaces |
| 4.5 A definition of the mean curvature for discrete isothermic surfaces |

5 Other integrable nets

| 5.1 Discrete O-systems (orthogonal coordinate systems) |
| 5.2 Discrete I-surfaces (isothermic surfaces) |
5.3 Discrete M-surfaces (minimal isothermic surfaces) 41
6 Discrete conformal maps 43
 6.1 Discrete isothermic nets in C 43
 6.2 Discrete P-surfaces (nets with the parallelogram property) 45
 6.3 Equations for cross-ratios of P-nets in C 46
 6.4 Schramm’s constraint 49
 6.5 Discrete S-surfaces in \mathbb{R}^3 (Schramm isothermic surfaces) 51
 6.6 Examples of discrete conformal mappings 53
Bibliography 56

2 A Discrete Version of the Darboux Transform for Isothermic Surfaces 59
 Udo Hertrich-Jeromin
 Tim Hoffmann
 Ulrich Pinkall
1 Introduction 59
2 The cross ratio 61
3 Discrete isothermic nets 65
4 The Darboux transform 68
5 Discrete nets of constant mean curvature 73
Bibliography 80

3 Discrete Amsler Surfaces and a Discrete Painlevé III Equation 83
 Tim Hoffmann
1 Introduction 83
2 Discrete surfaces with constant negative Gaussian curvature 84
 2.1 A square root of the discrete Sine-Gordon equation 84
 2.2 Discrete K-surfaces 85
3 The Amsler surface and the Painlevé equation 86
4 Discrete Amsler surface and discrete A-equation 87
5 A discrete Painlevé III equation 95
Bibliography 96

4 DiscretecmcSurfacesandDiscreteHolomorphicMaps 97
 Tim Hoffmann
1 Introduction 97
2 The DPW method 97
3 Discrete cmc surfaces 99
4 Splitting in the discrete case 100
5 The discrete DPW method 105
6 Examples 106
 6.1 Cylinder and two-legged Mr Bubbles 106
6 Recipe for integrable discretization 167
Second part: Examples 168
7 Example 1: Toda lattice 168
 7.1 Newtonian equations of motion and Flaschka variables 168
 7.2 The modified Toda lattice 169
 7.3 Lax representation 170
 7.4 Discretization of the Toda lattice in the variables (a, b) 172
 7.5 Discrete Newtonian equations of motion 173
8 Example 2: relativistic Toda lattice 177
 8.1 Newtonian equations of motion and the (c, d) variables 177
 8.2 New systems related to the RTL 179
 8.3 Lax representations 180
 8.4 Discretization of the RTL flows in the (c, d) variables 182
 8.5 Discrete Newtonian equations of motion for the $H_2^{(\pm)}$ flows 185
 8.6 Discrete Newtonian equations of motion for the $H_1^{(\pm)}$ flows 188
9 Example 3: Bogoyavlensky lattices 192
 9.1 Equations of motion and Lax representations 192
 9.2 A discretization of the BL1 194
 9.3 A discretization of the BL2 196
10 Example 4: peakons lattice 198
 10.1 Equations of motion and Lax representation 198
 10.2 Discretization of the peakons lattice 200
11 Concluding remarks 203
Acknowledgements 203
Bibliography 203

8 Discrete Painlevé Equations and Symmetry Reduction on the Lattice 209
 Frank W. Nijhoff 209
1 Introduction 209
2 Symmetries and integrability of partial difference equations 212
3 Symmetries of the lattice KdV family 215
4 The lattice Boussinesq family 220
 4.1 IVPs for the BSQ family 227
Bibliography 230

9 Lagrangian Description of Doubly Discrete Sine-Gordon Type Models 235
 Nadja Kutz 235
III QUANTUM SYSTEMS

10 Spectra of Quantum Integrals

Johannes Kellendonk

Nadja Kutz

Ruedi Seiler

Introduction 247

1 Discrete Weyl–Heisenberg algebra 251
 1.1 Definition of the discrete Weyl–Heisenberg algebra 251
 1.2 Discrete quantum mechanics: the Weyl–Schrödinger representation 252
 1.3 Discrete magnetic translations 253
 1.4 Irreducible representations 255

2 Computing spectra for rational flux 258
 2.1 Chambers relation 259

3 Models of Hofstadter type and quantum integrals 260
 3.1 Hamiltonians of Hofstadter type 260
 3.2 Automorphisms of the discrete Weyl–Heisenberg algebra and quantum integrals 261
 3.3 Chambers relation for \(H(a, b, k) \) 263

4 Polynomial solutions to the eigenvalue equation 264
 4.1 Polynomial solutions for rational flux 268
 4.2 Polynomial solutions depending analytically on the flux 269
 4.3 Application to the Hofstadter Hamiltonian and QP integrals 270
 4.4 Relating the Hofstadter Hamiltonian to the QP integral 272

5 Discrete sine-Gordon field theory 274
 5.1 Sine-Gordon theory as gauge theory 274
 5.2 Classical dynamics and Poisson structure for the sine-Gordon field 277
 5.3 Quantization 278
 5.4 Quantum dynamics of the sine-Gordon field 279
 5.5 Quantum integrals for periodic boundary conditions 283
 5.6 Quantum integrals of the (discrete) quantum pendulum 283
6 Algebraic Bethe ansatz for the SG integral 286
 6.1 Bethe ansatz ground state 287
 6.2 Bethe ansatz equations 288
 6.3 Bethe ansatz for reductions of the SG integral 289
 6.4 Positioning of the Bethe ansatz eigenvalues in bands of the spectrum of the QP integral 291

7 Comparison 294
Bibliography 294

11 Algebraic Quantization of Integrable Models in Discrete Space–Time 301
 Ludwig D. Faddeev
 Alexandre Yu. Volkov
1 Introduction 301
2 Classical differential equation 302
3 Classical difference equation 303
4 Algebra of observables i 305
5 Evolution operator i 306
6 q-exponent 307
7 A different angle 308
8 Algebra of observables ii 309
9 Evolution operator ii 309
10 Classical continuum limit 312
11 Conservation laws 313
12 Conclusion 318
Bibliography 318

12 Affine Toda Field Theory as a Three-dimensional Integrable System 321
 Rinat M. Kashaev
 Nikolai Yu. Reshetikhin
1 Introduction 321
2 Discrete space–time Toda field theory 323
 2.1 Notation 324
 2.2 Discrete Toda equations 324
3 Evolution operator and integrals of motion 326
 3.1 The evolution operator 326
 3.2 The L-operator 328
 3.3 The Lax pair and the integrals of motion 329
4 Discrete Toda field theory as a three-dimensional system 332
5 The $N \to \infty$ limit as a three-dimensional thermodynamic limit 334
 5.1 The free energy 334
 5.2 The thermodynamic limit 336
6 Conclusion 337
 6.1 The continuum limit 337
Contents

- **6.2** Open problems 338
- Acknowledgement 339
- Bibliography 339

13 Quantum Hyperbolic Invariants of Knots 343
 Rinat M. Kashaev

 1 Introduction 343
 2 Cyclic representations of the Weyl algebra 344
 - 2.1 Cyclic representations 345
 - 2.2 Clebsh–Gordan coefficients 346
 - 2.3 $6j$-symbols 347
 3 Construction of knot invariants 349
 - 3.1 Decoration and tetrahedral symmetry 349
 - 3.2 Topological quantum field theory 352
 - 3.3 The hyperbolic volume 355
 4 Concluding remarks 357
- Bibliography 358

14 Charge Transport in the Discretized Landau Model 361
 Thomas Richter
 Ruedi Seiler

- Bibliography 365

Index 367