Neural Network Control of Robot Manipulators and Nonlinear Systems

F.L. LEWIS
Automation and Robotics Research Institute
The University of Texas at Arlington

S. JAGANNATHAN
Systems and Controls Research
Caterpillar, Inc., Mossville

A. YEŞİLDİREK
Manager, New Product Development
Depsa, Panama City
Contents

List of Tables of Design Equations xi
List of Figures xviii
Series Introduction xix
Preface xxi

1 Background on Neural Networks 1
 1.1 NEURAL NETWORK TOPOLOGIES AND RECALL 2
 1.1.1 Neuron Mathematical Model 2
 1.1.2 Multilayer Perceptron 7
 1.1.3 Linear-in-the-Parameter (LIP) Neural Nets 10
 1.1.4 Dynamic Neural Networks 14
 1.2 PROPERTIES OF NEURAL NETWORKS 24
 1.2.1 Classification, Association, and Pattern Recognition 25
 1.2.2 Function Approximation 30
 1.3 NEURAL NETWORK WEIGHT SELECTION AND TRAINING 32
 1.3.1 Direct Computation of the Weights 33
 1.3.2 Training the One-Layer Neural Network— Gradient Descent 35
 1.3.3 Training the Multilayer Neural Network— Backpropagation 43
 1.3.4 Improvements on Gradient Descent 53
 1.3.5 Hebbian Tuning 56
 1.3.6 Continuous-Time Tuning 57
 1.4 REFERENCES 60
 1.5 PROBLEMS 63

2 Background on Dynamic Systems 67
 2.1 DYNAMICAL SYSTEMS 67
 2.1.1 Continuous-Time Systems 68
 2.1.2 Discrete-Time Systems 71
 2.2 SOME MATHEMATICAL BACKGROUND 75
 2.2.1 Vector and Matrix Norms 75
 2.2.2 Continuity and Function Norms 76
 2.3 PROPERTIES OF DYNAMICAL SYSTEMS 77
CONTENTS

2.3.1 Stability .. 78
2.3.2 Passivity .. 80
2.3.3 Observability and Controllability 83

2.4 FEEDBACK LINEARIZATION AND CONTROL SYSTEM DESIGN 86
2.4.1 Input-Output Feedback Linearization Controllers 87
2.4.2 Computer Simulation of Feedback Control Systems 92
2.4.3 Feedback Linearization for Discrete-Time Systems 96

2.5 NONLINEAR STABILITY ANALYSIS AND CONTROLS DESIGN 97
2.5.1 Lyapunov Analysis for Autonomous Systems 97
2.5.2 Controller Design Using Lyapunov Techniques 103
2.5.3 Lyapunov Analysis for Non-Autonomous Systems 106
2.5.4 Extensions of Lyapunov Techniques and Bounded Stability 109

2.6 REFERENCES .. 115

2.7 PROBLEMS .. 116

3 Robot Dynamics and Control 123
3.0.1 Commercial Robot Controllers 123

3.1 KINEMATICS AND JACOBIANS 124
3.1.1 Kinematics of Rigid Serial-Link Manipulators 125
3.1.2 Robot Jacobians 128

3.2 ROBOT DYNAMICS AND PROPERTIES 129
3.2.1 Joint Space Dynamics and Properties 130
3.2.2 State Variable Representations 134
3.2.3 Cartesian Dynamics and Actuator Dynamics 135

3.3 COMPUTED-TORQUE (CT) CONTROL AND COMPUTER SIMULATION 136
3.3.1 Computed-Torque (CT) Control 136
3.3.2 Computer Simulation of Robot Controllers 138
3.3.3 Approximate Computed-Torque Control and Classical Joint Control 143
3.3.4 Digital Control 145

3.4 FILTERED-ERROR APPROXIMATION-BASED CONTROL 147
3.4.1 A General Controller Design Framework Based on Approximation 154
3.4.2 Computed-Torque Control Variant 156
3.4.3 Adaptive Control 156
3.4.4 Robust Control 162
3.4.5 Learning Control 165

3.5 CONCLUSIONS ... 167
3.6 REFERENCES ... 168
3.7 PROBLEMS ... 169

4 Neural Network Robot Control 173
4.1 ROBOT ARM DYNAMICS AND TRACKING ERROR DYNAMICS 176
4.2 ONE-LAYER FUNCTIONAL-LINK NEURAL NETWORK CONTROLLER .. 179
4.2.1 Approximation by One-Layer Functional-Link NN 180
CONTENTS

4.2.2 NN Controller and Error System Dynamics 181
4.2.3 Unsupervised Backpropagation Weight Tuning 182
4.2.4 Augmented Unsupervised Backpropagation Tuning—Removing the PE Condition ... 187
4.2.5 Functional-Link NN Controller Design and Simulation Example 190
4.3 TWO-LAYER NEURAL NETWORK CONTROLLER 191
4.3.1 NN Approximation and the Nonlinearity in the Parameters Problem ... 194
4.3.2 Controller Structure and Error System Dynamics 196
4.3.3 Weight Updates for Guaranteed Tracking Performance 198
4.3.4 Two-Layer NN Controller Design and Simulation Example 206
4.4 PARTITIONED NN AND SIGNAL PREPROCESSING 206
4.4.1 Partitioned NN ... 206
4.4.2 Preprocessing of Neural Net Inputs ... 209
4.4.3 Selection of a Basis Set for the Functional-Link NN 209
4.5 PASSIVITY PROPERTIES OF NN CONTROLLERS 212
4.5.1 Passivity of the Tracking Error Dynamics 212
4.5.2 Passivity Properties of NN Controllers ... 213
4.6 CONCLUSIONS .. 216
4.7 REFERENCES ... 217
4.8 PROBLEMS ... 219

5 Neural Network Robot Control: Applications and Extensions 221
5.1 FORCE CONTROL USING NEURAL NETWORKS 222
5.1.1 Force Constrained Motion and Error Dynamics 223
5.1.2 Neural Network Hybrid Position/Force Controller 225
5.1.3 Design Example for NN Hybrid Position/Force Controller 232
5.2 ROBOT MANIPULATORS WITH LINK FLEXIBILITY, MOTOR DYNAMICS, AND JOINT FLEXIBILITY ... 233
5.2.1 Flexible-Link Robot Arms .. 233
5.2.2 Robots with Actuators and Compliant Drive Train Coupling 238
5.2.3 Rigid-Link Electrically-Driven (RLED) Robot Arms 244
5.3 SINGULAR PERTURBATION DESIGN .. 245
5.3.1 Two-Time-Scale Controller Design ... 246
5.3.2 NN Controller for Flexible-Link Robot Using Singular Perturbations 249
5.4 BACKSTEPPING DESIGN .. 258
5.4.1 Backstepping Design ... 258
5.4.2 NN Controller for Rigid-Link Electrically-Driven Robot Using Backstepping ... 262
5.5 CONCLUSIONS .. 267
5.6 REFERENCES ... 270
5.7 PROBLEMS ... 272
6 Neural Network Control of Nonlinear Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>SYSTEM AND TRACKING ERROR DYNAMICS</td>
<td>278</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Tracking Controller and Error Dynamics</td>
<td>279</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Well-Defined Control Problem</td>
<td>281</td>
</tr>
<tr>
<td>6.2</td>
<td>CASE OF KNOWN FUNCTION $g(x)$</td>
<td>281</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Proposed NN Controller</td>
<td>282</td>
</tr>
<tr>
<td>6.2.2</td>
<td>NN Weight Tuning for Tracking Stability</td>
<td>283</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Illustrative Simulation Example</td>
<td>286</td>
</tr>
<tr>
<td>6.3</td>
<td>CASE OF UNKNOWN FUNCTION $g(x)$</td>
<td>287</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Proposed NN Controller</td>
<td>287</td>
</tr>
<tr>
<td>6.3.2</td>
<td>NN Weight Tuning for Tracking Stability</td>
<td>289</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Illustrative Simulation Examples</td>
<td>296</td>
</tr>
<tr>
<td>6.4</td>
<td>CONCLUSIONS</td>
<td>301</td>
</tr>
<tr>
<td>6.5</td>
<td>REFERENCES</td>
<td>303</td>
</tr>
</tbody>
</table>

7 NN Control with Discrete-Time Tuning

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>BACKGROUND AND ERROR DYNAMICS</td>
<td>306</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Neural Network Approximation Property</td>
<td>306</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Stability of Systems</td>
<td>308</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Tracking Error Dynamics for a Class of Nonlinear Systems</td>
<td>308</td>
</tr>
<tr>
<td>7.2</td>
<td>ONE-LAYER NEURAL NETWORK CONTROLLER DESIGN</td>
<td>310</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Structure of the One-layer NN Controller and Error System Dynamics</td>
<td>311</td>
</tr>
<tr>
<td>7.2.2</td>
<td>One-layer Neural Network Weight Updates</td>
<td>312</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Projection Algorithm</td>
<td>316</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Ideal Case: No Disturbances or NN Reconstruction Errors</td>
<td>321</td>
</tr>
<tr>
<td>7.2.5</td>
<td>One-layer Neural Network Weight Tuning Modification for Relaxation of Persistency of Excitation Condition</td>
<td>321</td>
</tr>
<tr>
<td>7.3</td>
<td>MULTILAYER NEURAL NETWORK CONTROLLER DESIGN</td>
<td>327</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Structure of the NN Controller and Error System Dynamics</td>
<td>330</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Multilayer Neural Network Weight Updates</td>
<td>331</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Projection Algorithm</td>
<td>338</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Multilayer Neural Network Weight Tuning Modification for Relaxation of Persistency of Excitation Condition</td>
<td>340</td>
</tr>
<tr>
<td>7.4</td>
<td>PASSIVITY PROPERTIES OF THE NN</td>
<td>350</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Passivity Properties of the Tracking Error System</td>
<td>350</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Passivity Properties of One-layer Neural Networks and the Closed-Loop System</td>
<td>352</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Passivity Properties of Multilayer Neural Networks</td>
<td>353</td>
</tr>
<tr>
<td>7.5</td>
<td>CONCLUSIONS</td>
<td>354</td>
</tr>
<tr>
<td>7.6</td>
<td>REFERENCES</td>
<td>354</td>
</tr>
<tr>
<td>7.7</td>
<td>PROBLEMS</td>
<td>356</td>
</tr>
</tbody>
</table>