PRINCIPLES OF
Instrumental Analysis
Fifth Edition

Douglas A. Skoog
Stanford University

F. James Holler
University of Kentucky

Timothy A. Nieman
University of Illinois
at Urbana-Champaign

SAUNDERS GOLDEN SUNBURST SERIES

SAUNDERS COLLEGE PUBLISHING
HARCOURT BRACE COLLEGE PUBLISHERS
PHILADELPHIA • FORT WORTH • CHICAGO • SAN FRANCISCO •
AUSTIN • MONTREAL • TORONTO • LONDON • SYDNEY • TOKYO
Contents

Overview

<table>
<thead>
<tr>
<th>Section I</th>
<th>Measurement Basics</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 2</td>
<td>Electrical Components and Circuits</td>
<td>22</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>Operational Amplifiers in Chemical Instrumentation</td>
<td>53</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>Digital Electronics and Microcomputers</td>
<td>73</td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td>Signals and Noise</td>
<td>99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section II</th>
<th>Atomic Spectroscopy</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 6</td>
<td>An Introduction to Spectrometric Methods</td>
<td>116</td>
</tr>
<tr>
<td>CHAPTER 7</td>
<td>Components of Optical Instruments</td>
<td>143</td>
</tr>
<tr>
<td>CHAPTER 8</td>
<td>An Introduction to Optical Atomic Spectrometry</td>
<td>192</td>
</tr>
<tr>
<td>CHAPTER 9</td>
<td>Atomic Absorption and Atomic Fluorescence Spectrometry</td>
<td>206</td>
</tr>
<tr>
<td>CHAPTER 10</td>
<td>Atomic Emission Spectrometry</td>
<td>230</td>
</tr>
<tr>
<td>CHAPTER 11</td>
<td>Atomic Mass Spectrometry</td>
<td>253</td>
</tr>
<tr>
<td>CHAPTER 12</td>
<td>Atomic X-Ray Spectrometry</td>
<td>272</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section III</th>
<th>Molecular Spectroscopy</th>
<th>299</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 13</td>
<td>An Introduction to Ultraviolet/Visible Molecular Absorption Spectrometry</td>
<td>300</td>
</tr>
<tr>
<td>CHAPTER 14</td>
<td>Applications of Ultraviolet/Visible Molecular Absorption Spectrometry</td>
<td>329</td>
</tr>
<tr>
<td>CHAPTER 15</td>
<td>Molecular Luminescence Spectrometry</td>
<td>355</td>
</tr>
<tr>
<td>CHAPTER 16</td>
<td>An Introduction to Infrared Spectrometry</td>
<td>380</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>17</td>
<td>Applications of Infrared Spectrometry</td>
<td>404</td>
</tr>
<tr>
<td>18</td>
<td>Raman Spectroscopy</td>
<td>429</td>
</tr>
<tr>
<td>19</td>
<td>Nuclear Magnetic Resonance Spectroscopy</td>
<td>445</td>
</tr>
<tr>
<td>20</td>
<td>Molecular Mass Spectrometry</td>
<td>498</td>
</tr>
<tr>
<td>21</td>
<td>Surface Characterization by Spectroscopy and Microscopy</td>
<td>535</td>
</tr>
</tbody>
</table>

Section IV

Electroanalytical Chemistry 563

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Introduction to Electroanalytical Chemistry</td>
<td>564</td>
</tr>
<tr>
<td>23</td>
<td>Potentiometry</td>
<td>591</td>
</tr>
<tr>
<td>24</td>
<td>Coulometry</td>
<td>622</td>
</tr>
<tr>
<td>25</td>
<td>Voltammetry</td>
<td>639</td>
</tr>
</tbody>
</table>

Section V

Separation Methods 673

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>An Introduction to Chromatographic Separations</td>
<td>673</td>
</tr>
<tr>
<td>27</td>
<td>Gas Chromatography</td>
<td>701</td>
</tr>
<tr>
<td>28</td>
<td>High-Performance Liquid Chromatography</td>
<td>725</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Supercritical Fluid Chromatography and Extraction</td>
<td>768</td>
</tr>
<tr>
<td>30</td>
<td>Capillary Electrophoresis and Capillary Electrochromatography</td>
<td>778</td>
</tr>
</tbody>
</table>

Section VI

Miscellaneous Methods 797

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Thermal Methods</td>
<td>798</td>
</tr>
<tr>
<td>32</td>
<td>Radiochemical Methods</td>
<td>810</td>
</tr>
<tr>
<td>33</td>
<td>Automated Methods of Analysis</td>
<td>829</td>
</tr>
</tbody>
</table>

Appendices A-1

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Evaluation of Analytical Data</td>
<td>A–1</td>
</tr>
<tr>
<td>2</td>
<td>Activity Coefficients</td>
<td>A–25</td>
</tr>
<tr>
<td>3</td>
<td>Some Standard and Formal Electrode Potentials</td>
<td>A–28</td>
</tr>
<tr>
<td>4</td>
<td>Compounds for Preparing Standard Solutions of Some Common Elements</td>
<td>A–32</td>
</tr>
<tr>
<td>5</td>
<td>Common Acronyms Encountered in Chemical Instrumentation</td>
<td>A–34</td>
</tr>
</tbody>
</table>

Answers to Selected Problems ANS–I
Index I–I
Contents

CHAPTER 1 Introduction 1
1A Classification of Analytical Methods 1
1B Types of Instrumental Methods 2
1C Instruments for Analysis 3
1D Selecting an Analytical Method 11
1E Calibration of Instrumental Methods 15
1F Questions and Problems 18

Section I
Measurement Basics 21

CHAPTER 2 Electrical Components and Circuits 22
2A Direct Current Circuits and Measurements 22
2B Alternating Current Circuits 28
2C Semiconductors and Semiconductor Devices 38
2D Power Supplies and Regulators 44
2E Readout Devices 46
2F Questions and Problems 49

CHAPTER 3 Operational Amplifiers in Chemical Instrumentation 53
3A Properties of Operational Amplifiers 53
3B Operational Amplifier Circuits 56
3C Amplification and Measurement of Transducer Signals 58
3D Application of Operational Amplifiers to Voltage and Current Control 63
3E Application of Operational Amplifiers to Mathematical Operations 64
3F Application of Operational Amplifiers to Switching 68
3G Questions and Problems 69

CHAPTER 4 Digital Electronics and Microcomputers 73
4A Analog and Digital Signals 74
4B Counting and Arithmetic with Binary Numbers 74
4C Basic Digital Circuit Components 76
4D Microprocessors and Microcomputers 83
CHAPTER 21 Surface Characterization by Spectroscopy and Microscopy 535
21A Introduction to the Study of Surfaces 535
21B Spectroscopic Surface Methods 536
21C Scanning Electron Microscopy 549
21D Scanning Probe Microscopes 553
21E Questions and Problems 561

Section IV

Electroanalytical Chemistry 563

CHAPTER 22 An Introduction to Electroanalytical Chemistry 564
22A Electrochemical Cells 565
22B Potentials in Electroanalytical Cells 569
22C Electrode Potentials 571
22D Calculation of Cell Potentials from Electrode Potentials 580
22E Currents in Electrochemical Cells 582
22F Types of Electroanalytical Methods 587
22G Questions and Problems 589

CHAPTER 23 Potentiometry 591
23A Reference Electrodes 591
23B Metallic Indicator Electrodes 594
23C Membrane Indicator Electrodes 596
23D Ion-Selective Field-Effect Transistors (ISFETs) 606
23E Molecular-Selective Electrode Systems 607
23F Instruments for Measuring Cell Potentials 610
23G Direct Potentiometric Measurements 612
23H Potentiometric Titrations 618
23I Questions and Problems 618

CHAPTER 24 Coulometry 622
24A Current-Voltage Relationships During an Electrolysis 622
24B An Introduction to Coulometric Methods of Analysis 627
24C Potentiostatic Coulometry 628
24D Coulometric Titrations (Amperostatic Coulometry) 632
24E Questions and Problems 636

CHAPTER 25 Voltammetry 639
25A Excitation Signals in Voltammetry 640
25B Voltammetric Instrumentation 640
25C Hydrodynamic Voltammetry 644
25D Cyclic Voltammetry 654
25E Polarography 656
25F Stripping Methods 666
25G Voltammetry with Ultramicroelectrodes 669
25H Questions and Problems 670

Section V

Separation Methods 673

CHAPTER 26 An Introduction to Chromatographic Separations 674
26A A General Description of Chromatography 675
26B Migration Rates of Solutes 678
26C Zone Broadening and Column Efficiency 680
26D Optimization of Column Performance 687
26E Summary of Important Relationships for Chromatography 693
26F Applications of Chromatography 695
26G Questions and Problems 697

CHAPTER 27 Gas Chromatography 707
27A Principles of Gas-Liquid Chromatography 702
27B Instruments for Gas-Liquid Chromatography 703
27C Gas Chromatographic Columns and Stationary Phases 711
27D Applications of Gas-Liquid Chromatography (GLC) 716
27E Gas-Solid Chromatography 721
27F Questions and Problems 722

CHAPTER 28 High-Performance Liquid Chromatography 725
28A Scope of HPLC 726
28B Column Efficiency in Liquid Chromatography 726
28C Instruments for Liquid Chromatography 728
28D Partition Chromatography 739
28E Adsorption Chromatography 748
Contents

28F Ion-Exchange Chromatography 750
28G Size-Exclusion Chromatography 756
28H Thin-Layer Chromatography 761
28I Questions and Problems 766

CHAPTER 29 Supercritical Fluid Chromatography and Extraction 768
29A Properties of Supercritical Fluids 768
29B Supercritical Fluid Chromatography 769
29C Supercritical Fluid Extraction 774
29D Questions and Problems 777

CHAPTER 30 Capillary Electrophoresis and Capillary Electrochromatography 778
30A An Overview of Electrophoresis 779
30B Capillary Electrophoresis 780
30C Applications of Capillary Electrophoresis 786
30D Capillary Electrochromatography 792
30E Questions and Problems 795

Section VI

Miscellaneous Method 797

CHAPTER 31 Thermal Methods 798
31A Thermogravimetric Methods (TG) 798
31B Differential Thermal Analysis (DTA) 801
31C Differential Scanning Calorimetry (DSC) 805
31D Questions and Problems 808

CHAPTER 32 Radiochemical Methods 810
32A Radioactive Isotopes 810
32B Instrumentation 817
32C Neutron Activation Methods 819
32D Isotope Dilution Methods 823
32E Questions and Problems 826

CHAPTER 33 Automated Methods of Analysis 829
33A An Overview of Automatic Instruments and Instrumentation 829
33B Flow-Injection Analysis 831
33C Discrete Automatic Systems 841
33D Analyses Based upon Multilayer Films 845
33E Questions and Problems 849

Appendices

APPENDIX 1 Evaluation of Analytical Data A–1
APPENDIX 2 Activity Coefficients A–25
APPENDIX 3 Some Standard and Formal Electrode Potentials A–28
APPENDIX 4 Compounds for Preparing Standard Solutions of Some Common Elements A–32
APPENDIX 5 Common Acronyms Encountered in Chemical Instrumentation A–34

Answers to Selected Problems ANS–I

Index I–1