BOSE–EINSTEIN
CONDENSATION OF
EXCITONS AND BIEXCITONS
AND COHERENT NONLINEAR OPTICS
WITH EXCITONS

S.A. MOSKALENKO
Academy of Sciences of
Moldova

D.W. SNOKE
University of Pittsburgh

CAMBRIDGE
UNIVERSITY PRESS
Contents

Preface
page xi

1 **Introduction**
1.1 What is an Exciton?
1.2 The Exciton as a Boson
1.3 Phase Transitions of Excitons
1.4 Experimental Evidence for Boson Behavior
 1.4.1 Phonon-Assisted Luminescence from Excitons
 1.4.2 Bose Narrowing
 1.4.3 The Ideal-Gas Model for Excitons
1.5 Experiments on Bose–Einstein Condensation of Excitons

2 **Basic Theory of Bose–Einstein Condensation of Excitons**
2.1 The Bogoliubov Model of the Weakly Nonideal Bose Gas
 2.1.1 The Quasi-Averages
 2.1.2 Coherent States
 2.1.3 The Excitons as Weakly Interacting, Structureless Bosons
 2.1.4 The Beliaev Diagram Technique
 2.1.5 The Excitation Spectrum and Momentum Distribution as Seen in the Phonon-Assisted Luminescence
2.2 Bose–Einstein Condensation of Coupled Electron–Hole Pairs
 2.2.1 The Keldysh–Kozlov–Kopaev Formulation of Bose Condensation
 2.2.2 The Hartree–Fock–Bogoliubov Approximation
 2.2.3 The Screening Effects and the Correlation Energy
 2.2.4 Collective Elementary and Macroscopic Excitations

3 **The Interaction of Condensed Excitons with Lattice Phonons**
3.1 Introduction
3.2 The Diagram Technique for the Case $T = 0$. The Energy Spectrum of the System
 3.2.1 The Definition of the Green’s Functions
 3.2.2 The Symmetry Properties of the Green’s Functions and their Self-Energy Parts for the Bose System in the Presence of the Condensate
 3.2.3 The Structure of the Equations

vii
<table>
<thead>
<tr>
<th>3.2.4</th>
<th>The Transition from the Variable N to the variable μ. The Feynman Rules for the Exciton–Phonon Green’s Functions</th>
<th>92</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.5</td>
<td>The Energy Spectrum and the Change of the Sound Velocity in Crystals due to Bose Condensation of Excitons</td>
<td>94</td>
</tr>
<tr>
<td>3.3</td>
<td>In-Depth Study: The Green’s Function Method for $T > 0$</td>
<td>95</td>
</tr>
<tr>
<td>3.3.1</td>
<td>The Zeroth-Order Approximation</td>
<td>100</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Phonons and Hydrons in the Dipole-Allowed Single-Photon Transition</td>
<td>103</td>
</tr>
<tr>
<td>3.4</td>
<td>Experiments on Superfluid Exciton Transport and the Phonon Wind</td>
<td>107</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Superfluidity of Excitons in Semiconductors</td>
<td>109</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Anomalous Exciton Transport in Cu$_2$O</td>
<td>112</td>
</tr>
<tr>
<td>3.4.3</td>
<td>The Exciton-Condensate Soliton</td>
<td>114</td>
</tr>
<tr>
<td>3.4.4</td>
<td>The Phonon Wind</td>
<td>116</td>
</tr>
<tr>
<td>4</td>
<td>Bose–Einstein Condensation of Biexcitons</td>
<td>123</td>
</tr>
<tr>
<td>4.1</td>
<td>Biexcitons and Exciton–Exciton Interactions in Semiconductors</td>
<td>123</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Electron–Hole Structure of the Excitonic Molecule</td>
<td>123</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Exciton–Exciton Interactions</td>
<td>129</td>
</tr>
<tr>
<td>4.2</td>
<td>Coherent Binding of Electron–Hole Quaternions</td>
<td>136</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Formulation of the Method</td>
<td>136</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Coherent Pairing of Electrons and Holes with Opposite-Sign Trions</td>
<td>140</td>
</tr>
<tr>
<td>4.3</td>
<td>Coherent Pairing of Excitons</td>
<td>143</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Coherent Pairing in the Multicomponent Exciton System</td>
<td>144</td>
</tr>
<tr>
<td>4.3.2</td>
<td>In-Depth Study: Coherent Pairing of Excitons Induced by Laser Radiation</td>
<td>149</td>
</tr>
<tr>
<td>4.4</td>
<td>Experimental Studies on Nonequilibrium Bose–Einstein Condensation of Biexcitons in CuCl Crystals</td>
<td>156</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Bose Narrowing of Biexciton Luminescence</td>
<td>156</td>
</tr>
<tr>
<td>4.4.2</td>
<td>The Nonequilibrium Bose–Einstein Condensate</td>
<td>157</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Optical Phase Conjugation Based on Stimulated Scattering</td>
<td>160</td>
</tr>
<tr>
<td>5</td>
<td>Phase Transitions and Thermodynamics of High-Density of Excitons</td>
<td>166</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>166</td>
</tr>
<tr>
<td>5.2</td>
<td>Excitons and Electron–Hole Plasma</td>
<td>168</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Electron–Hole Liquid and Electron–Hole Plasma</td>
<td>168</td>
</tr>
<tr>
<td>5.2.2</td>
<td>First-Order and Second-Order Phase Transitions in the Degenerate Electron–Hole System</td>
<td>171</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Hysteresis due to Screening Effects</td>
<td>177</td>
</tr>
<tr>
<td>5.3</td>
<td>The Approach of T.D. Lee and C.N. Yang</td>
<td>182</td>
</tr>
<tr>
<td>5.3.1</td>
<td>In-Depth Study: Excitons with Different Dispersion Laws</td>
<td>185</td>
</tr>
<tr>
<td>5.3.2</td>
<td>In-Depth Study: Bose Condensation of Excitons in an External Field – Ferromagnetism and Ferroelectricity</td>
<td>191</td>
</tr>
<tr>
<td>6</td>
<td>The Optical Stark Effect and the Virtual Bose Condensate</td>
<td>201</td>
</tr>
<tr>
<td>6.1</td>
<td>Nonequilibrium Theory of the Optical Stark Effect in the Exciton Range of the Spectrum</td>
<td>201</td>
</tr>
<tr>
<td>6.1.1</td>
<td>The Keldysh Diagram Technique</td>
<td>202</td>
</tr>
</tbody>
</table>
6.1.2 Nonequilibrium Theory of Virtual Excitonic Bose–Einstein Condensation 205
6.1.3 The Coulomb Green’s Function Method 211
6.1.4 Linear Response to a Weak Perturbation 214
6.2 The Energy Spectrum and the Exciton Absorption and Gain Bands in the Presence of Laser Radiation 216
6.2.1 Energy Spectrum of the Elementary Excitations in a Coherently Polarized Crystal 218
6.2.2 Exciton Absorption and Gain Bands in a Coherently Polarized Crystal 224
6.3 In-Depth Study: Biexcitons in a Coherent Cloud of Virtual Excitons 229
6.4 In-Depth Study: Optical Stark Effect in the Exciton–Biexciton System 234
6.4.1 Biexcitons as Structureless Bosons 234
6.4.2 Nonlinear Optical Properties of Biexcitons 237
6.4.3 The Role of Biexcitonic States in the Excitonic Optical Stark Effect 243

7 Bose–Einstein Condensation of Mixed States of Excitons and Photons 249
7.1 Introduction. Polaritons and Semiconductor Microcavities 249
7.2 Condensate-Photon Modes and Giant Polaritons 252
7.2.1 The Keldysh Equations Describing the Coherent Excitons and Photons 252
7.2.2 The Excitons as Simple Bosons 259
7.3 The Energy Spectrum of the Noncondensed Excitons and Photons in the Presence of a Condensate 263
7.3.1 The Absolute and Convective Instabilities. Sturrock’s Rules 263
7.3.2 Energy Spectrum of the Elementary Excitations in the Presence of the Condensate Photon Mode 266
7.3.3 The Instabilities in a System with a Strong Polariton Effect 273
7.3.4 In-Depth Study: The Elementary Excitations in the Three-Component System of Excitons, Photons, and Phonons 277
7.4 In-Depth Study: Phonoritons, and Nonlinear Absorption of Polaritons 283
7.4.1 Acoustic and Optical Phonoritons 284
7.4.2 Stokes- and Anti-Stokes-Scattering Processes in a Two-Component Model 285
7.5 In-Depth Study: High-Intensity Polariton Wave near the Stimulated-Scattering Threshold 289

8 Nonequilibrium Kinetics of High-Density Excitons 295
8.1 Condensate Formation in the Bose Gas 295
8.1.1 Ginzburg–Landau Theory of Superfluidity in the Coherent State Representation 297
8.1.2 The Nucleation and Buildup of the Bose Condensate 300
8.2 Population Dynamics of a Bose Gas 305
8.2.1 Evolution of the Particle Distribution Function 307
8.2.2 Two Kinetic Stages, Before and After Condensation 310
8.2.3 Bose Condensation by means of Particle–Phonon Interaction 311
8.3 In-Depth Study: Quantum Fluctuations and Induced Bose–Einstein Condensation of Polaritons – Squeezed States of Polaritons in Quantum Dots

8.3.1 The Model Hamiltonian, Master, and Kinetic Equations
8.3.2 The Fokker–Planck Equation and Squeezed States
8.3.3 Stationary Self-Consistent Solution

9 Coherent Nonlinear Optics with Excitons

9.1 Optical Bistability Effects and Self-Pulsations
9.1.1 Self-Pulsations in the Excitonic Range of the Spectrum
9.1.2 Self-Pulsating Laser Radiation due to Exciton–Biexciton Conversion

9.2 Self-Induced Transparency, Nutation, and Quantum Beats
9.2.1 The Polariton Soliton
9.2.2 Exciton–Photon Nutation
9.2.3 Quantum Beats of Excitons

9.3 Photon-Echo and Transient Effects
9.3.1 Photon-Echo Theory Beyond the Fixed-Field Approximation
9.3.2 The Transient Stage and the Area Theorems

10 New Directions

10.1 Trapping Excitons with Stress
10.2 Two-Dimensional Systems
10.2.1 Dipole Excitons in Coupled Quantum Wells
10.2.2 Charged Bosons and Bose Condensate Superconductors
10.2.3 Bose Statistics of Excitons and Biexcitons in Single Quantum Wells
10.2.4 Trapping Excitons in Two Dimensions

10.3 The Excitonic Insulator, or "Excitonium"
10.3.1 Long-Range Order in the Excitonic Insulator
10.3.2 Experimental Evidence for the Excitonic-Insulator Phase

10.4 Optical Coherence Without Lasing

Appendix A: Properties of Excitons in Cu$_2$O