Chapter 1  The Structure of Materials: Overview  1

1.1 Descriptors and Averaging  3
1.2 Preliminary Concepts  5
  1.2.1 Symmetry  5
  1.2.2 Bonding  11
    Types of Bonds  12
    Structural Descriptors of Bonded Materials  15
    Molecular Geometry  17
    Polyatomic Covalently Bonded Molecules: Electron-Domain Theory  18
    Shape Diversity in Large Molecules and Macromolecules  20
  1.2.3 Coordination Number  22
  1.2.4 Packing Fraction  22
  1.2.5 Order and Disorder  23
1.3 Structure of Materials Roadmap  25

References  28
Additional Reading  28
Exercises  28
3.1.3 Rotational Symmetry 99
   Proper Rotation Axes 99
   Limitation of Rotational Symmetries in Crystals due to Translational
   Periodicity 101
3.1.4 Plane Point Groups 103
   Derivation of Plane Point Groups by Combining Reflections and
   Rotations 103
   General and Special Positions 106
   International and Schoenflies Symbols 107
3.1.5 The Five Distinct Plane Lattices 108
   Plane Lattice Nets Arising from Crystallographic Rotation Axes and
   Translations 109
   Lattice Nets Arising from Mirror Lines and Translations 112
3.1.6 Plane Groups 114
   Addition of Reflectional Symmetry to Plane Lattices 116
   The Seventeen Distinct Crystallographic Plane Groups 117
3.1.7 The International Tables for Crystallography: Plane Groups 119
   Symbols and Notation 120
   Description of Two-Dimensional Patterns by Crystallographic Data 122
   Generation of Two-Dimensional Patterns from Crystallographic Data 124
   Summary of Information Concerning Plane Groups 126
3.2 The Crystallography of Three Dimensions 126
3.2.1 Symmetry Operations Unique to Three Dimensions 126
   Inversion 126
   Rotoinversion 127
   Rotoreflection 129
   Screw Axes 130
3.2.2 Techniques for Three-Dimensional Spatial Relationships 135
   Rational Intercept Plane: Miller Indices 135
   Direction Common to Two Planes, Zone Axes, Weiss Zone Law 138
   Spherical Trigonometry 140
   Stereographic Projection 143
3.2.3 Axial Combinations of Rotational Symmetries 146
   Simultaneous Rotational Symmetries 146
   Permissible Combinations of Rotational Axes in Three-Dimensional
   Crystals 147
3.2.4 The Thirty-Two Crystallographic Point Groups 151
   Decomposition of Improper Rotation Axes 152
Contents

Derivation of Point Groups by Adding Extenders to Permissible Axial Combinations 153
Schoenflies Notation for the Crystallographic Point Groups 158
Laue Groups 159
3.2.5 Space Lattices 159
Principles of Derivation by Stacking of Plane Lattices 162
The Fourteen Bravais Lattices and Six Crystal Systems 166
Conventional Unit Cells for the Crystal Lattices 168
3.2.6 Space Groups 170
Glide Planes 170
Derivation Method for Space Groups 172
3.2.7 The International Tables for Crystallography: Space Groups 173
3.3 Symmetry Constraints on Material Properties 179
3.3.1 Transformation of a Vector 181
3.3.2 Transformation of a Tensor 181
3.3.3 Tensor Properties of Crystals 182
3.3.4 Symmetry Constraints 185
3.4 Hard-Sphere Packing and Crystal Structure 189
3.4.1 Close-Packed Structures 191
3.4.2 Interstitial Sites in Close-Packed Structures 194
3.4.3 Close Packing in Ionic Compounds 195
3.5 Quasicrystals 196
3.5.1 Aperiodic Tiling Patterns 197
3.5.2 Icosahedral Structures in Crystals 201
References 201
Additional Reading 202
Exercises 202

Chapter 4 Liquid-Crystalline State 213

4.1 Structural Classes of Liquid Crystals 218
4.1.1 Nematic Phase 220
4.1.2 Twisted Nematic Phase 221
4.1.3 Smectic Phase 223
4.1.4 Columnar Phase 226
4.2 Descriptors for Liquid Crystals 227
4.2.1 Pair-Distribution Function 227
4.2.2 Orientational Order Parameter 228
4.2.3 Translational Order Parameter 231
Chapter 4  Liquid Crystals  233

4.3 Mesophase Texture and Identification of Liquid-Crystalline Phases  233
4.4 Applications of Liquid Crystals  233
  4.4.1 Surfactants  233
  4.4.2 Liquid-Crystalline Fibers  235
  4.4.3 Liquid-Crystal Displays  237
  4.4.4 Next-Generation Flexible Liquid-Crystal Displays  239
4.5 Plastic Crystals  242

References  242

Additional Reading  243

Exercises  243

Chapter 5  Imperfections in Ordered Media  249

5.1 Point Imperfections  251
  5.1.1 Vacancies  251
  5.1.2 Interstitials  255
  5.1.3 Point Imperfections in Molecular Crystals  257
  5.1.4 Mobility of Point Imperfections  260
  5.1.5 Solid Solutions  260
  5.1.6 Point Imperfections in Ionic Crystals  263
    Kroger-Vink Notation  264
    Schottky and Frenkel Imperfections  265
    Imperfections Associated with Impurities  267
5.2 Line Imperfections  271
  5.2.1 Dislocations  273
    Evidence for Dislocations  276
    Characterization of Dislocations: Tangent Vector and Burgers Vector  280
    Dislocation Motion by Slip and Climb  283
    Dislocation Loops  287
    Slip Systems  290
    Resolved Shear Stress on a Dislocation  294
    Elastic Energy of Dislocations  298
    Strengthening Mechanisms in Crystals  298
    Generation of Dislocations  304
    Dislocations in Columnar Crystals  307
  5.2.2 Disclinations  307
5.3 Surface Imperfections  313
  5.3.1 Surface Tension and Surface Free Energy  313