INTRODUCTION TO CONTROL OF OSCILLATIONS AND CHAOS

A. L. Fradkov
A. Yu. Pogromskiy
Russian Academy of Sciences
Contents

Preface v

Notations and definitions 1

Chapter 1 Introduction 5
1.1 What is control? ... 5
 1.1.1 Models of the controlled plants 6
 1.1.2 Control goals 8
 1.1.3 "Naïve" control 10
 1.1.4 Feedback 12
 1.1.5 Uncertainty 13
 1.1.6 Nonlinearity 15
1.2 What is chaos? 18
1.3 What use is it? 21
 1.3.1 Mechanics and mechanical engineering 21
 1.3.2 Electrical engineering and telecommunications .. 22
 1.3.3 Chemistry and chemical engineering 24
 1.3.4 Biology, biochemistry and medicine 26
 1.3.5 Economics and finance 27

Chapter 2 The mathematics of nonlinear control 29
2.1 Mathematical models of controlled systems 29
2.2 Stability and boundedness 37
 2.2.1 State-space stability 37
 2.2.2 Stability theorems and Lyapunov functions .. 43
 2.2.3 Absolute stability 53
Contents

2.3 Feedback linearization and normal forms 61
2.4 Feedback stabilization and passivity 67
 2.4.1 Introductory comments ... 67
 2.4.2 Passivity and dissipativity 69
 2.4.3 Passification as a control design problem 78
 2.4.4 Input-to-state stability .. 83
2.5 Speed gradient algorithms .. 87
 2.5.1 Goal-oriented formulation of the control problem 87
 2.5.2 Design of Speed Gradient Algorithms 90
 2.5.3 Properties of the speed gradient algorithms 94
 2.5.4 Identifying properties of SG algorithms 110
2.6 Robustness of speed gradient algorithms with respect to disturbances .. 112
2.7 Gradient control of discrete-time systems 116

Chapter 3 The mathematics of oscillations and chaos 121
3.1 What is oscillation? .. 121
 3.1.1 General concepts ... 121
 3.1.2 Oscillations in dynamical systems 125
3.2 Stability of oscillations .. 132
 3.2.1 Convergence and synchronization 132
 3.2.2 Lyapunov stability, Lyapunov exponents, Bol exponents 139
 3.2.3 Computation of the Bol exponents 144
 3.2.4 Orbital stability .. 145
3.3 Poincaré maps ... 149
 3.3.1 Definition and properties of the Poincaré map 149
 3.3.2 Controlled Poincaré maps 151
 3.3.3 Controlled closing lemma .. 156
3.4 What is chaos? (continued) ... 158

Chapter 4 Methods of nonlinear and adaptive control of oscillations 163
4.1 Adaptive control problem statement 163
4.2 Direct and identification approaches to adaptive control design 169
4.3 Adaptive systems with reference models 173
 4.3.1 Problem statement ... 173
 4.3.2 State feedback ... 174
 4.3.3 Output feedback .. 182
4.4 Controlled synchronization of dynamical systems 186
4.5 Decomposition based synchronization 189
4.6 Passivity based synchronization 193
 4.6.1 Semipassivity and \mathcal{L}-dissipativity 193
 4.6.2 Synchronization of two linearly coupled systems 196
 4.6.3 Synchronization of several systems with multiple interconnections 203
 4.6.4 Adaptive synchronization 207
 4.6.5 Adaptive synchronization of uncertain semipassive systems 210
 4.6.6 Adaptive synchronization of hyper-minimum-phase systems 215
4.7 Adaptive suppression of forced oscillations 218
4.8 Control of cascaded systems. Relaxation of the matching condition 232
 4.8.1 Integrator backstepping 232
 4.8.2 Adaptive control of unmatched systems 238
4.9 Speed Gradient control of Hamiltonian systems 247
 4.9.1 Control of energy 247
 4.9.2 The swinging (small control) property 252
 4.9.3 Control of first integrals 253
 4.9.4 Control of generalized Hamiltonian systems 257
4.10 Discrete adaptive control via linearization of Poincaré map 260
 4.10.1 Background and motivation 260
 4.10.2 Linearization of the controlled Poincaré map 261
4.11 Control of bifurcations 269

Chapter 5 Control of oscillatory and chaotic systems 273
5.1 Control of pendulums 273
 5.1.1 Swinging a simple pendulum 273
 5.1.2 Pendulum with a controlled suspension point 280
5.2 Stabilization of the equilibrium point of the thermal convection loop model 286
5.3 Adaptive synchronization of two forced Duffing's systems 295
5.4 Adaptive synchronization of Chua's circuits 304
5.5 Gradient control of the Hénon system 309
 5.5.1 Stabilizing the unstable equilibrium of the Hénon system 310
Contents

5.5.2 Synchronizing two identical Hénon systems 312
5.5.3 Adaptive model reference control of the Hénon system . 313
5.6 Control of periodic and chaotic oscillations in the brussellator model .. 314

Chapter 6 Applications 323
6.1 How to tow a car out of a ditch 323
6.2 Synchronization of generators based on tunnel diodes 327
6.3 Stabilization of swings in power systems 333
6.4 Adaptive control of the thin film growth from a multicomponent gas ... 342
6.5 Control of oscillatory behavior of populations 346
6.6 Control of a nonlinear business-cycle model 351

Chapter 7 Conclusions: What is the message of the book? 359

Exercises 363
Bibliography 367
Index 389