Contents

Part I Linear Spaces and Systems of Equations

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic Concepts</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Linear space</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>The Euclidean Space E^n</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Orthogonal Sets and Decompositions</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>Matrices</td>
<td>14</td>
</tr>
<tr>
<td>1.6</td>
<td>Systems of Linear Equations</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Orthogonal Sets</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction and Motivation</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Orthogonal Decompositions</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>The Orthogonalization Module</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>Mathematica Program</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Matrix Calculations Using Orthogonal Sets</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Matrix Calculations Using Orthogonal Sets</td>
<td>41</td>
</tr>
</tbody>
</table>

ix
6.2 Convex Sets 147
6.3 Types of Linear Combinations 148
6.4 Polyhedral Convex Cones 151
6.5 The Γ-Process 157
6.6 The Complete Γ-Algorithm 182
6.7 Mathematica Program 184
 Exercises 189

7 Polytopes and Polyhedra 191
 7.1 Introduction 191
 7.2 Polytopes 191
 7.3 Polyhedra 207
 Exercises 212

8 Cones and Systems of Inequalities 215
 8.1 Introduction 215
 8.2 A Discussion of Linear Systems 216
 8.3 Solving Linear Systems 226
 8.4 Applications to Linear Programming 247
 Exercises 248

Part III Linear Programming

9 An Introduction to Linear Programming 255
 9.1 Introduction 255
 9.2 Problem Statement and Basic Definitions 255
 9.3 Linear Programming Problem in Standard Form 261
 9.4 Basic Solutions 264
 9.5 Duality 264
 Exercises 271

10 The Exterior Point Method 275
 10.1 Introduction 275
 10.2 The Exterior Point Method 275
 10.3 Making the EPM More Efficient 299
 10.4 Complexity 318
 10.5 Recovering the Final Tableau from the Solution 320
 10.6 Modifying a Linear Programming Problem 321
Exercises 339

Part IV Applications

11 Applications 345
 11.1 Introduction 345
 11.2 Matrix Analysis of Engineering Structures 346
 11.3 The Transportation Problem 365
 11.4 Production-Scheduling Problems 369
 11.5 The Input–Output Tables 376
 11.6 The Diet Problem 378
 11.7 Network Flow Problems 380
 Exercises 387

Part V Appendices

Appendix A: A Java Application 395
 A.1 How to Use the Program 396

Appendix B: List of Notation 407

References 415

Index 419