Order Statistics:
Theory & Methods

Edited by
N. Balakrishnan
Department of Mathematics and Statistics
McMaster University
Hamilton, Ontario, Canada

C. R. Rao
Center for Multivariate Analysis
Department of Statistics, The Pennsylvania State University
University Park, PA, USA

1998
ELSEVIER
AMSTERDAM • LAUSANNE • NEW YORK • OXFORD • SHANNON • SINGAPORE • TOKYO
Table of contents

Preface v
Contributors xvii

PART I. INTRODUCTION AND BASIC PROPERTIES

Ch. 1. Order Statistics: An Introduction 3
N. Balakrishnan and C. R. Rao

1. Introduction 3
2. Marginal distributions of order statistics 4
3. Joint distributions of order statistics 5
4. Properties 7
5. Moments and product moments 7
6. Recurrence relations and identities 8
7. Bounds 10
8. Approximations 10
9. Characterizations 11
10. Asymptotics 12
11. Best linear unbiased estimation and prediction 12
12. Inference under censoring 14
13. Results for some specific distributions 16
14. Outliers and robust inference 17
15. Goodness-of-fit tests 18
16. Related statistics 18
17. Generalizations 20
 References 21

Ch. 2. Order Statistics: A Historical Perspective 25
H. Leon Harter and N. Balakrishnan

1. Introduction 25
2. Distribution theory and properties 26
3. Measures of central tendency and dispersion 27
Table of contents

4. Regression coefficients 28
5. Treatment of outliers and robust estimation 29
6. Maximum likelihood estimators 29
7. Best linear unbiased estimators 30
8. Recurrence relations and identities 32
9. Bounds and approximations 32
10. Distribution-free tolerance procedures 33
11. Prediction 35
12. Statistical quality control and range 36
13. Multiple comparisons and studentized range 36
14. Ranking and selection procedures 38
15. Extreme values 39
16. Plotting positions on probability paper 40
17. Simulation methods 41
18. Ordered characteristic roots 41
19. Goodness-of-fit tests 43
20. Characterizations 45
21. Moving order statistics and applications 45
22. Order statistics under non-standard conditions 46
23. Multivariate order statistics and concomitants 47
24. Records 47
 References 48

Ch. 3. Computer Simulation of Order Statistics 65

Pandu R. Tadikamalla and N. Balakrishnan

1. Introduction 65
2. Direct generation of order statistics 65
3. Generation of uniform (0, 1) ordered samples 65
4. Generation of progressive Type-II censored order statistics 68
5. Miscellaneous topics 69
 References 70

PART II. ORDERINGS AND BOUNDS

Ch. 4. Lorenz Ordering of Order Statistics and Record Values 75

Barry C. Arnold and Jose A. Villasenor

1. Introduction 75
2. The Lorenz order 75
3. Order statistics and record values 77
4. Lorenz ordering of order statistics 78
5. Lorenz ordering of record values 81
6. Remarks 86
 References 86
Table of contents

Ch. 5. Stochastic Ordering of Order Statistics 89

Philip J. Boland, Moshe Shaked and J. George Shanthikumar

1. Introduction 89
2. Stochastic orderings 90
3. Stochastic order for order statistics from one sample 94
4. Stochastic order for order statistics from two samples 99
 - Acknowledgement 102
 - References 102

Ch. 6. Bounds for Expectations of L-Estimates 105

Tomasz Rychlik

1. Introduction 105
2. Distribution bounds 106
3. Moment and support bounds 112
4. Moment bounds for restricted families 123
5. Quantile bounds for restricted families 135
 - References 142

PART III. RELATIONS AND IDENTITIES

Ch. 7. Recurrence Relations and Identities for Moments of Order Statistics 149

N. Balakrishnan and K. S. Sultan

1. Introduction 149
2. Notations 153
3. Recurrence relations for single moments 154
4. Recurrence relations for product moments 161
5. Relations between moments of order statistics from two related populations 171
6. Normal and half normal distributions 172
7. Cauchy distribution 175
8. Logistic and related distributions 177
9. Gamma and related distributions 184
10. Exponential and related distributions 188
11. Power function and related distributions 190
12. Pareto and related distributions 193
13. Rayleigh distribution 199
14. Linear-exponential distribution 200
15. Lomax distribution 203
16. Log-logistic and related distributions 204
17. Burr and truncated Burr distributions 209
18. Doubly truncated parabolic and skewed distributions 211
19. Mixture of two exponential distributions 212
20. Doubly truncated Laplace distribution 212
21. A class of probability distributions 216
 - Acknowledgement 221
 - References 222
PART IV. CHARACTERIZATIONS

Ch. 8. Recent Approaches to Characterizations Based on Order Statistics and Record Values 231

C. R. Rao and D. N. Shanbhag

1. Introduction 231
2. Some basic tools 232
3. Characterizations based on order statistics 236
4. Characterizations involving record values and monotonic stochastic processes 249
 Acknowledgment 253
 References 254

Ch. 9. Characterizations of Distributions via Identically Distributed Functions of Order Statistics 257

Ursula Gather, Udo Kamps and Nicole Schweitzer

1. Introduction 257
2. Characterizations of exponential distributions based on normalized spacings 259
3. Related characterizations of other continuous distributions 268
4. Characterizations of uniform distributions 270
5. Characterizations of specific continuous distributions 272
6. Characterizations of geometric and other discrete distributions 280
 References 285

Ch. 10. Characterizations of Distributions by Recurrence Relations and Identities for Moments of Order Statistics 291

Udo Kamps

1. Introduction 291
2. Characterizations by sequences of moments and complete function sequences 293
3. Characterizations of exponential distributions 296
4. Related characterizations in classes of distributions 297
5. Characterizations based on a single identity 302
6. Characterizations of normal and other distributions by product moments 305
 References 308

PART V. EXTREMES AND ASYMPTOTICS

Ch. 11. Univariate Extreme Value Theory and Applications 315

Janos Galambos

1. Introduction 315
2. The classical models 317
Table of contents

3. Applications and statistical inference 324
4. Deviations from the classical models 329
Acknowledgements 330
References 331

Ch. 12. Order Statistics: Asymptotics in Applications 335
Pranab Kumar Sen

1. Introduction 335
2. Some basic results in order statistics 337
3. Some basic asymptotics in order statistics 341
4. Robust estimation and order statistics: asymptotics in applications 343
5. Trimmed LSE and regression quantiles 350
6. Asymptotics for concomitants of order statistics 352
7. Concomitant L-functionals and nonparametric regression 357
8. Applications of order statistics in some reliability problems 361
9. TTT asymptotics and tests for aging properties 365
10. Concluding remarks 370
References 371

Ch. 13. Zero-One Laws for Large Order Statistics 375
R. J. Tomkins and Hong Wang

1. Introduction 375
2. Zero-One laws for the upper-case probability 376
3. Zero-one laws for the lower-case probability 379
4. Zero-One laws for the lower-case probability when ranks vary 382
Acknowledgements 383
References 384

PART VI. ROBUST METHODS

Ch. 14. Some Exact Properties Of Cook’s D_L 387
D. R. Jensen and D. E. Ramirez

1. Introduction 387
2. Preliminaries 388
3. The structure of Cook’s D_L 390
4. Normal-Theory properties 393
5. Modified versions of D_L 398
6. Summary 400
References 401
Table of Contents

Ch. 15. Generalized Recurrence Relations for Moments of Order Statistics from Non-Identical Pareto and Truncated Pareto Random Variables with Applications to Robustness 403

Aaron Childs and N. Balakrishnan

1. Introduction 403
2. Relations for single moments 405
3. Relations for product moments 407
4. Results for the multiple-outlier model (with a slippage of \(p \) observations) 412
5. Generalization to the truncated Pareto distribution 413
6. Robustness of the MLE and BLUE 415
7. Robustness of the censored BLUE 416
8. Conclusions 421
 Acknowledgements 426
 Appendix A 426
 Appendix B 432
 References 438

PART VII. RESAMPLING METHODS

Ch. 16. A Semiparametric Bootstrap for Simulating Extreme Order Statistics 441

Robert L. Strawderman and Daniel Zelterman

1. Introduction 441
2. A semiparametric bootstrap approximation to \(X_t \) 444
3. A saddlepoint approximation to the bootstrap distribution 448
4. Numerical implementation 451
5. Simulation results 453
6. Example: The British coal mining data 458
 Acknowledgements 460
 References 461

Ch. 17. Approximations to Distributions of Sample Quantiles 463

Chunsheng Ma and John Robinson

1. Introduction and definitions 463
2. Smirnov's lemma 467
3. Normal approximation 468
4. Saddlepoint approximation 475
5. Bootstrap approximation 479
 References 482
PART VIII. RELATED STATISTICS

Ch. 18. Concomitants of Order Statistics 487

H. A. David and H. N. Nagaraja

1. Introduction and summary 487
2. Finite-sample distribution theory and moments 488
3. Asymptotic theory 493
4. Estimation and tests of hypotheses 496
5. The rank of $Y_{(n)}$ 501
6. Selection through an associated variable 504
7. Functions of concomitants 506
 References 510

Ch. 19. A Record of Records 515

Valery B. Nevzorov and N. Balakrishnan

1. Introduction 515
2. Classical records 515
3. Definitions 517
4. Representations of record times and record values using sums of independent terms 518
5. Distributions and probability structure of record times 520
6. Moments of record times and numbers of records 523
7. Limit theorems for record times 525
8. Inter-Record times 525
9. Distributions and probability structure of record values in sequences of continuous random variables 527
10. Limit theorems for record values from continuous distributions 528
11. Record values from discrete distributions 528
12. Weak records 529
13. Bounds and approximations for moments of record values 530
14. Recurrence relations for moments of record values 531
15. Joint distributions of record times and record values 532
16. Generalizations of the classical record model 534
17. kth record times 534
18. kth inter-record times 537
19. kth record values for the continuous case 538
20. kth record values for the discrete case 540
21. Weak kth record values 540
22. k_n-records 541
23. Records in sequences of dependent random variables 543
24. Random record models 545
25. Nonstationary record models 545
26. Multivariate records 558
27. Relations between records and other probabilistic and statistical problems 558
28. Nonclassical characterizations based on records 559
29. Processes associated with records 560
30. Diverse results 560
PART IX. RELATED PROCESSES

Ch. 20. Weighted Sequential Empirical Type Processes with Applications to Change-Point Problems 573

Barbara Szyszkowicz

1. Introduction 573
2. Weighted empirical processes based on observations 579
3. “Bridge-type” two-time parameter empirical processes 590
4. Weighted empirical processes based on ranks 599
5. Weighted empirical processes based on sequential ranks 604
6. “Bridge-type” empirical processes of sequential ranks 609
7. Contiguous alternatives 614
8. Weighted multi-time parameter empirical processes 621
Acknowledgement 628
References 628

Ch. 21. Sequential Quantile and Bahadur–Kiefer Processes 631

Miklós Csörgő and Barbara Szyszkowicz

1. Introduction: Basic notions, definitions and some preliminary results 631
2. Deviations between the general and uniform quantile processes and their sequential versions 649
3. Weighted sequential quantile processes in supremum and L_p-metrics 654
4. A summary of the classical Bahadur-Kiefer process theory via strong invariance principles 662
5. An extension of the classical Bahadur–Kiefer process theory via strong invariance principles 680
6. An outline of a sequential version of the extended Bahadur-Kiefer process theory via strong invariance principles 683
Acknowledgement 686
References 686

Author Index 689

Subject Index 701

Contents of Previous Volumes 715