Contents

Preface xv

1 Introduction to Digital Signal Processing Systems 1
 1.1 Introduction 1
 1.2 Typical DSP Algorithms 2
 1.3 DSP Application Demands and Scaled CMOS Technologies 27
 1.4 Representations of DSP Algorithms 31
 1.5 Book Outline 40
 References 41

2 Iteration Bound 43
 2.1 Introduction 43
 2.2 Data-Flow Graph Representations 43
 2.3 Loop Bound and Iteration Bound 45
 2.4 Algorithms for Computing Iteration Bound 47
 2.5 Iteration Bound of Multirate Data-Flow Graphs 55
 2.6 Conclusions 57
 2.7 Problems 58
 References 61

References vii
3 Pipelining and Parallel Processing 63
 3.1 Introduction 63
 3.2 Pipelining of FIR Digital Filters 64
 3.3 Parallel Processing 69
 3.4 Pipelining and Parallel Processing for Low Power 74
 3.5 Conclusions 82
 3.6 Problems 83
 References 88

4 Retiming 91
 4.1 Introduction 91
 4.2 Definitions and Properties 93
 4.3 Solving Systems of Inequalities 95
 4.4 Retiming Techniques 97
 4.5 Conclusions 112
 4.6 Problems 112
 References 118

5 Unfolding 119
 5.1 Introduction 119
 5.2 An Algorithm for Unfolding 121
 5.3 Properties of Unfolding 124
 5.4 Critical Path, Unfolding, and Retiming 127
 5.5 Applications of Unfolding 128
 5.6 Conclusions 140
 5.7 Problems 140
 References 147

6 Folding 149
 6.1 Introduction 149
 6.2 Folding Transformation 151
 6.3 Register Minimization Techniques 157
 6.4 Register Minimization in Folded Architectures 163
 6.5 Folding of Multirate Systems 170
 6.6 Conclusions 174
 6.7 Problems 174
 References 186

7 Systolic Architecture Design 189
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Introduction</td>
<td>189</td>
</tr>
<tr>
<td>7.2</td>
<td>Systolic Array Design Methodology</td>
<td>190</td>
</tr>
<tr>
<td>7.3</td>
<td>FIR Systolic Arrays</td>
<td>192</td>
</tr>
<tr>
<td>7.4</td>
<td>Selection of Scheduling Vector</td>
<td>201</td>
</tr>
<tr>
<td>7.5</td>
<td>Matrix-Matrix Multiplication and 2D Systolic Array Design</td>
<td>205</td>
</tr>
<tr>
<td>7.6</td>
<td>Systolic Design for Space Representations Containing Delays</td>
<td>210</td>
</tr>
<tr>
<td>7.7</td>
<td>Conclusions</td>
<td>213</td>
</tr>
<tr>
<td>7.8</td>
<td>Problems</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>223</td>
</tr>
<tr>
<td>8</td>
<td>Fast Convolution</td>
<td>227</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>227</td>
</tr>
<tr>
<td>8.2</td>
<td>Cook-Toom Algorithm</td>
<td>228</td>
</tr>
<tr>
<td>8.3</td>
<td>Winograd Algorithm</td>
<td>237</td>
</tr>
<tr>
<td>8.4</td>
<td>Iterated Convolution</td>
<td>244</td>
</tr>
<tr>
<td>8.5</td>
<td>Cyclic Convolution</td>
<td>246</td>
</tr>
<tr>
<td>8.6</td>
<td>Design of Fast Convolution Algorithm by Inspection</td>
<td>250</td>
</tr>
<tr>
<td>8.7</td>
<td>Conclusions</td>
<td>251</td>
</tr>
<tr>
<td>8.8</td>
<td>Problems</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>253</td>
</tr>
<tr>
<td>9</td>
<td>Algorithmic Strength Reduction in Filters and Transforms</td>
<td>255</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>255</td>
</tr>
<tr>
<td>9.2</td>
<td>Parallel FIR Filters</td>
<td>256</td>
</tr>
<tr>
<td>9.3</td>
<td>Discrete Cosine Transform and Inverse DCT</td>
<td>275</td>
</tr>
<tr>
<td>9.4</td>
<td>Parallel Architectures for Rank-Order Filters</td>
<td>285</td>
</tr>
<tr>
<td>9.5</td>
<td>Conclusions</td>
<td>297</td>
</tr>
<tr>
<td>9.6</td>
<td>Problems</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>310</td>
</tr>
<tr>
<td>10</td>
<td>Pipelined and Parallel Recursive and Adaptive Filters</td>
<td>313</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>313</td>
</tr>
<tr>
<td>10.2</td>
<td>Pipeline Interleaving in Digital Filters</td>
<td>314</td>
</tr>
<tr>
<td>10.3</td>
<td>Pipelining in 1st-Order IIR Digital Filters</td>
<td>320</td>
</tr>
<tr>
<td>10.4</td>
<td>Pipelining in Higher-Order IIR Digital Filters</td>
<td>325</td>
</tr>
<tr>
<td>10.5</td>
<td>Parallel Processing for IIR filters</td>
<td>339</td>
</tr>
<tr>
<td>10.6</td>
<td>Combined Pipelining and Parallel Processing for IIR Filters</td>
<td>345</td>
</tr>
</tbody>
</table>
13.4 Bit-Serial Multipliers 490
13.5 Bit-Serial Filter Design and Implementation 499
13.6 Canonic Signed Digit Arithmetic 505
13.7 Distributed Arithmetic 511
13.8 Conclusions 518
13.9 Problems 518
References 527

14 Redundant Arithmetic 529
14.1 Introduction 529
14.2 Redundant Number Representations 530
14.3 Carry-Free Radix-2 Addition and Subtraction 531
14.4 Hybrid Radix-4 Addition 536
14.5 Radix-2 Hybrid Redundant Multiplication Architectures 540
14.6 Data Format Conversion 545
14.7 Redundant to Nonredundant Converter 547
14.8 Conclusions 551
14.9 Problems 552
References 555

15 Numerical Strength Reduction 559
15.1 Introduction 559
15.2 Subexpression Elimination 560
15.3 Multiple Constant Multiplication 560
15.4 Subexpression Sharing in Digital Filters 566
15.5 Additive and Multiplicative Number Splitting 574
15.6 Conclusions 583
15.7 Problems 583
References 589

16 Synchronous, Wave, and Asynchronous Pipelines 591
16.1 Introduction 591
16.2 Synchronous Pipelining and Clocking Styles 593
16.3 Clock Skew and Clock Distribution in Bit-Level Pipelined VLSI Designs 601
16.4 Wave Pipelining 606
16.5 Constraint Space Diagram and Degree of Wave Pipelining 612
16.6 Implementation of Wave-Pipelined Systems 614
16.7 Asynchronous Pipelining 619
References 741

Appendix C: Euclidean GCD Algorithm 743
C.1 Introduction 743
C.2 Euclidean GCD Algorithm for Integers 743
C.3 Euclidean GCD Algorithm for Polynomials 745

Appendix D: Orthonormality of Schur Polynomials 747
D.1 Orthogonality of Schur Polynomials 747
D.2 Orthonormality of Schur Polynomials 749

Appendix E: Fast Binary Adders and Multipliers 753
E.1 Introduction 753
E.2 Multiplexer-Based Fast Binary Adders 753
E.3 Wallace Tree and Dadda Multiplier 758
References 761

Appendix F: Scheduling in Bit-Serial Systems 763
F.1 Introduction 763
F.2 Outline of the Scheduling Algorithm 764
F.3 Minimum Cost Solution 766
F.4 Scheduling of Edges with Delays 768
References 769

Appendix G: Coefficient Quantization in FIR Filters 771
G.1 Introduction 771
G.2 NUS Quantization Algorithm 771
References 774

Index 775