Radiation Trapping in Atomic Vapours

ANDREAS F. MOLISCH AND BERNHARD P. OEHRY

Institute for Communications and Radio Frequency Engineering, Technical University, Vienna

CLARENDON PRESS • OXFORD
1998
CONTENTS

List of Symbols ix

I BACKGROUND

1 Introduction 3
 1.1 The physical process of radiation trapping 3
 1.2 Historical overview 6
 1.3 Applications of radiation trapping 9
 1.4 Outline of the book 12

2 Atomic Lineshapes 15
 2.1 The Einstein theory of radiation 15
 2.2 Broadening mechanisms 20
 2.2.1 Natural broadening 20
 2.2.2 Doppler broadening 20
 2.2.3 Pressure broadening 22
 2.2.4 Voigt lineshapes 24
 2.3 Strength rules for fine and hyperfine splitting 30

3 Collisions, quenching, and particle diffusion 33
 3.1 Collisional cross-sections 33
 3.2 Collisions between atoms of the same kind 35
 3.3 Collisions between atoms of different kinds 35
 3.4 Collisions with electrons; ionization and recombination 36
 3.5 Particle diffusion 37
 3.6 Hyperfine-structure intermixing 41
 3.7 Fine-structure intermixing 42

II THE CLASSICAL RADIATION TRAPPING PROBLEM

4 Formulation of the classical problem 49
 4.1 The Milne equation 50
 4.2 The Holstein equation 51
 4.2.1 Derivation of the Holstein equation 51
 4.2.2 Idealized geometries 56
 4.2.3 Simplifying assumptions in the derivation of the Holstein equation 59
 4.3 The multiple-scattering representation 64
 4.4 The equation of radiative transfer 67
 4.5 The escape factor 69
5 Mathematical methods for the Holstein equation
5.1 The variational technique
5.2 Exact solutions in the high-opacity case
5.2.1 Van Trigt's solution
5.2.2 The geometrical quantization technique
5.2.3 The Fourier transform technique
5.3 The piecewise-constant approximation
5.4 The propagator function method
5.5 Other computation methods

6 Methods for the multiple-scattering representation
6.1 Monte Carlo simulations
6.2 Analytical solutions

7 Fitting equations and physical interpretation
7.1 Doppler and Lorentz lines
7.2 Voigt lines
7.3 Hyperfine split lines
7.4 Higher-order modes
7.5 Steady-state solutions of the Holstein equation
7.6 The emergent spectrum

8 The Milne and Eddington approximations
8.1 The original Milne theory
8.2 The angle approximation
8.3 The generalized Eddington approximation
8.4 The frequency approximation

9 Mathematical methods for the transfer equation
9.1 Discrete ordinate solution
9.2 The Feautrier technique
9.2.1 The basic Feautrier technique
9.2.2 Modified finite-differencing equations
9.2.3 Choice of the boundary conditions
9.3 The variable Eddington factor technique
9.4 Modified Feautrier approaches
9.4.1 The Rybicki reorganization
9.4.2 The core saturation method
9.4.3 The implicit integral method
9.4.4 Splitting algorithms
9.4.5 Quadrature perturbation
9.4.6 The discontinuous finite-element (DFE) method
III GENERALIZED TRAPPING PROBLEMS

10 Simple generalizations 165
 10.1 Branching and quenching 165
 10.2 Three-level atoms 167
 10.3 Reflecting walls 171
 10.3.1 Diffusely reflecting walls 171
 10.3.2 Specularly reflecting walls 173
 10.4 Particle diffusion 179
 10.4.1 Formulation and direct solution 179
 10.4.2 The modal combination technique 181
 10.4.3 The discrete-ordinate technique 186
 10.4.4 Results 192
 10.5 Inhomogeneous distribution of absorbers 193
 10.6 Two- and three-dimensional geometries 197
 10.6.1 The finite cylinder 197
 10.6.2 The parallelepiped 201
 10.6.3 The torus and the hollow cylinder 201

11 Partial frequency redistribution 204
 11.1 The physical picture of PFR 204
 11.1.1 Redistribution functions in the atomic rest frame 205
 11.1.2 Redistribution functions in the laboratory rest frame 208
 11.1.3 Angle-averaged redistribution functions 210
 11.1.4 Pure Doppler broadening 211
 11.1.5 Doppler plus natural broadening 214
 11.1.6 Doppler plus collisional broadening 218
 11.1.7 Doppler, natural, plus collisional broadening 219
 11.1.8 Branching transitions 220
 11.1.9 The Holstein equation with PFR 221
 11.2 Variational solution 223
 11.3 The velocity distribution of excited atoms 230
 11.4 The propagator function method and the PCA method 232
 11.5 Monte Carlo simulations 236
 11.6 Transfer equation formulations 238
 11.7 Frequency diffusion 240
 11.8 Large-scale particle flow 242

12 Polarization 247
 12.1 Introduction 247
 12.2 Formal solution of the vector transfer equation 248
12.3 Trapping problems with polarization
 12.3.1 The polarization-free approximation 250
 12.3.2 The Holstein equation without magnetic field 251
 12.3.3 The Holstein equation with magnetic field 253
12.4 Monte Carlo simulations 254
12.5 Physical effects 258

13 Non-linear radiation trapping 262
13.1 When do non-linearities occur? 263
13.2 Interaction of strong laser radiation with atoms 267
 13.2.1 Selection of velocity groups 268
 13.2.2 Burn-through and one-dimensionality 270
13.3 Steady-state solutions 271
 13.3.1 Complete linearization 272
 13.3.2 Operator perturbation 276
 13.3.3 Direct iteration 285
 13.3.4 Approximate techniques 287
 13.3.5 Monte Carlo simulations 287
13.4 Transient problems 288
 13.4.1 Numerical solution of the non-linear Holstein equation 288
 13.4.2 Analytical approximations 291
 13.4.3 Numerical solution of the transfer equation 293
 13.4.4 Physical effects 294
 13.4.5 Monte Carlo simulations 298
13.5 Multilevel systems 299
 13.5.1 Complete linearization in the multilevel case 299
 13.5.2 Operator perturbation techniques for multilevel systems 300
 13.5.3 The equivalent two-level atom 301
 13.5.4 Steady-state in three-level atoms 303
 13.5.5 Time-dependent depletion 307

14 Combination of techniques 313
14.1 The four basic questions 313
14.2 Linear trapping with complete frequency redistribution 314
 14.2.1 Solution methods for the classical Holstein equation 314
 14.2.2 Inclusion of other physical effects 317
14.3 Nonlinear trapping with CFR 319
 14.3.1 Taking the non-linearity into account 320
 14.3.2 Multilevel atoms 320
 14.3.3 Required accuracy 321
14.4 Trapping with partial frequency redistribution 321
A.6 The alkaline earth elements 399
A.7 Trivalent elements 399
A.8 Hyperfine structure and isotope splitting 399
A.8.1 Hyperfine structure 399
A.8.2 Isotope splitting 401
A.9 Effects of external magnetic and electric fields 401
A.9.1 The Zeeman effect 401
A.9.2 The Stark effect 402

B Values of the $A_{k,m}$ matrix elements for the numerical solution of the Holstein equation 403
B.1 The slab 403
B.2 The cylinder—method 1 404
B.3 The cylinder—method 2 406
B.4 The sphere 409

C Publicly available software for the computation of radiation trapping 413
C.1 RAD-TRAP 413
C.2 McTrap 415
C.3 SLAB3 418
C.4 ALTAIR 419
C.5 TLUSTY 420
C.6 Other programs 421

D Fitting equations for the eigenvalues and eigenfunctions of the Holstein equation 422
D.1 The slab 422
D.2 The cylinder 422
D.3 The sphere 423

E Finite difference solution of the inhomogeneous equation of radiative transfer in a finite cylinder 427

F The density matrix 433
F.1 The density matrix for atomic states 433
F.2 The density matrix for photons 434
F.3 Interaction of atoms and radiation 436
F.4 State multipoles 437
F.4.1 Definition of tensor operators 437
F.4.2 Definition of state multipoles 438

G High-field effects 440
G.1 Absorption and emission coefficients of homogeneously broadened lines 440
G.2 AC-Stark splitting and Mollow triplets 441