Contemporary Instrumental Analysis
CONTENTS

Preface xviii
About the Authors xx

CHAPTER 1

Preliminaries

1.1 Introduction 3
1.2 Some Definitions 3
 Identification, Determination, Analysis, Assay, Quantitation, and Analyte 3
 Validation 4
 Methods, Protocols, and Techniques 4
1.3 Solving a Problem 4
1.4 A Brief Review of Basic Measures 8
 Atomic Mass 8
 Mole 9
 Prefix Notation 9
1.5 Measures ofComposition: Units of Content 10
 Weight-to-Weight Measures 10
 Weight-to-Volume Measures 11
 Number-to-Volume Measures 12
 Volume-to-Volume Measures 13
 The pH and Other Logarithmic Scales 13
1.6 Experiments and Mathematical Equations 13

Suggestions for Further Reading 15 • Concept Review 16
Exercises 16

CHAPTER 2

Statistical Tests and Error Analysis

2.1 Introduction 19
2.2 Finding Errors 19
 A Simple Analysis by Chromatography 19
 Am I at Least in the Ballpark? 20
2.3 Measuring Errors 20
2.4 Absolute and Relative Measures 23
2.5 Precision and Accuracy 24
2.6 Random Errors and the Normal (Gaussian) Distribution 25
 Properties of Gaussian Distributions 28
2.7 The Confidence Limit 29
 Confidence Limits when \(\sigma \) Is Known 29
 Confidence Limits when \(\sigma \) Is Unknown 30
2.8 Standards, Blanks, and Accuracy 32
Sample Treatment, Interferences, and Standards

4.1 Sample Preparation 91
4.2 Maximize Recovery 92
 Loss of Analyte 93
 Correction for Loss of Analyte 95
4.3 Optimize the Chemical Form 96
 Working Directly with Solid Samples 96
 Adding or Removing Heat 96
 Dissolution 97
 Digestion 97
 Integrated Vaporization 100
4.4 Minimize the Interferences 101
 Extraction 102
 Dialysis 107
 Precipitation and Flotation 107
 Purge and Trap 109
4.5 Optimize the Concentration 109
4.6 Calibration and Standards 111
4.7 Types of Standards 112
 External Standards 112
 Added Standards 114

A DEEPER LOOK
4A The Basis of Ultrasound-Assisted Dissolution and Digestion 118
4B Microwave-Assisted Sample Preparation 119
4C Supercritical Fluid Extraction 122
4D Purge and Trap 123
4E Flow Injection Analysis 126
4F Standard Reference Materials 128
 Definitions 130

Suggestions for Further Reading 130 • Concept Review 132
Exercises 132
Case 3: Micro-Organic Analysis 148
Case 4: A Solid and the Distribution of Elements in Its Structure 149

5.5 Signals, Noise, and Detection Limits 150
5.6 Figures of Merit and the Detection Limit 152
 Comparing Detection Limits 153
5.7 The Limit of Detection in More Detail 154

Suggestions for Further Reading 158 • Concept Review 158
Exercises 158

CHAPTER

Electronics and Noise

6.1 Introduction 163
6.2 DC Current, Voltage, and Resistance 164
6.3 Power 165
6.4 Kirchhoff’s Laws 166
 Resistors in Series: Voltage Dividers 167
 Resistors in Parallel 169
 Wheatstone Bridge Circuit: Resistors Combined in Series and
 in Parallel 169
6.5 Time-Dependent Responses of Circuits 171
6.6 Signal-to-Noise Ratios 174
6.7 Types of Noise 175
 Thermal Noise 176
 Shot Noise 178
 1/f Noise 179
 Electrical Interference 179
6.8 Amplifiers and Amplification 180
 A Few Common Operational Amplifier Circuits 182
6.9 Detection Limit with a Multichannel Detector 187

A DEEPER LOOK
6A Schematic Symbols in Electronics 188
6B A Brief Introduction to the Nomenclature
 of Digital Logic 189
 A Flip-Flop Network 191
 The D-block Latch 192
 A Binary Counter 195
6C Capacitors, Inductors, and
 Alternating Current (AC) 196
 Capacitors and AC 196
 Inductors and AC 198
 LC Circuits and Resonance 199

Suggestions for Further Reading 201 • Exercises 202
CHAPTER 7

Electrochemical Methods

7.1 The Variety of Electrochemical Methods 205
7.2 A Review: Electrochemical Potentials and the Nernst Equation 205
 Chemical Activities 205
 The Nernst Equation 206
 Concentration Cells 208
 pH and the Electrochemical Potential 208
 The Formal Potential 209

7.3 Toward Measurements 211
 How an Inert Electrode Senses the Potential of a Redox Couple 211
 The Experimental Measurement 213

7.4 Potentiometry and Ion-Selective Electrodes 215
 Reference Half-Cells 215
 Ion-Selective Interfaces and Ion-Selective Electrodes 217
 Range of Response of Ion-Selective Electrodes 222
 Ion-Selective Field-Effect Transistors 223
 Interferences and Ion-Selective Electrodes 224
 Potentiometric Precision 226

7.5 Electrochemical Methods Using Current Flow 226
 Behavior of an Electrochemical Cell with an Applied Potential 226
 The Linear Region 227
 The Nonlinear Region 228
 Kinetic Overpotential 229

7.6 Three-Electrode Potentiostat 231

7.7 Conductimetry 233
 Conductivity and Ionic Concentration 234
 Conductimetry in Practice 235

7.8 Coulometry 238
 Background Currents: Competitive Electrolysis 240
 Coulometric Titrations 242

7.9 Amperometry 243
 Fixed-Potential Amperometry: Amperometric Titrations 244
 The Two-Electrode System 244
 "One-Electrode" System 247
 Chromatography/Amperometry 248

7.10 Voltammetry 248
 DC Polarography and the Dropping Mercury Electrode 250
 Pulsed Voltammetry 250
 Differential Pulse Voltammetry 254
 Cyclic Voltammetry 255

7.11 Stripping Voltammetry 258

A DEEPER LOOK

7A Notation for Electrochemical Cells 260
7B How Selectivity Coefficients Are Determined 263
Introduction to Spectrometry

8.1 Spectrometry, from Radiofrequency to γ-Rays 275
8.2 Review of Energy, Wavelength, Frequency, and Temperature 276
8.3 The Transformations of Light Energy 280
 Spectrometric Names 281
8.4 Spectral Purity and Spectral Resolution 282
 Monochromators and Polychromators in the Optical Range 284
 Bandwidth and Spectral Slit Width 285
 Resolution 285
8.5 Measurement of Spectra 286
8.6 Light Scattering 289
 Geometry of Scattering 289
 Elastic Scattering Origins and Behavior 290
 Inelastic Scattering 291
8.7 Emission Spectrometry 292
8.8 Absorption Spectrometry 293
 Absorbance and Concentration 295
 Absorbance, Concentration, and Precision 296
 Spectral Resolution and Error in Concentration Measurements 297
 Sample Cells and Solvents 298
 Other Limits to Photometric Precision 299
8.9 Fluorescence/Phosphorescence Spectrometry 301
 Comparisons of the Methods 304
8.10 Spectral Interference and the Spectra of Mixtures 305
 Background Correction 307
 Quantifying Two Species with Spectral Interference Present 308
8.11 Chemical Interference 311
 Isosbestic Points 311
8.12 Instrument Interference 312
8.13 Total Internal Reflection and Fiber Optics 314
 Attenuated Total Reflection 317
8.14 Diffuse Reflectance Spectrometry 321
8.15 Derivative Spectrometry 325

A DEEPER LOOK
8A Wavelength Separation: Interference, Diffraction, Gratings, and Filters 326
 Constructive and Destructive Interference of Two Stationary Waves 327
Contents

- Two-Slit Diffraction 328
- Multislit Diffraction 329
- Gratings 330
- Grating Monochromators 333
- Interferometers 334

8B Sources of Electromagnetic Radiation: 190 nm to 50 μm 335
- Lasers and Laser Safety 335
- The Ultraviolet Region, 190 to 320 nm: Deuterium, Xenon, and Mercury Arcs 335
- The Visible Region, 320 to ~750 nm: Tungsten Filament Lamps 337
- The Infrared Region, 2.5 to 50 μm: Nernst Glower 339

8C Representative Transducers for Electromagnetic Radiation 339
- Rectifiers for Radiofrequency 339
- Infrared Devices 340
- Phototubes and Photomultipliers 341
- CCDs and CIDs 343
- X-ray and Gamma Detectors 345

8D Derivation of the Beer-Lambert Law 346
- Luminescence and its Dependence on Concentration 348

8E The Nomenclature of Molecular Absorption and Luminescence 349

Suggestions for Further Reading 353 • Exercises 354

Chapter 9

Spectrometry for Elemental Analysis

- 9.1 Atomic Spectrometry 363
- 9.2 Nomenclature of Atomic Spectrometry 363
- Spectra and Spectral Notation 364
- 9.3 Intensities and Linewidths of Gas Phase Atomic Spectra 366
- Linewidth Dependence on Temperature and Pressure 366
- Simultaneous Emission and Absorption and Lineshape Changes 367
- 9.4 Factors Affecting Atomization/Ionization 370
- Solid Samples 370
- Atoms or Ions? 371
- Liquid Samples 373
- Gaseous Samples 375
- 9.5 Isolated Atoms or Ions from Samples 376
- Furnaces 376
- Plasmas 377
- Flames 380
- 9.6 Causes of Spectral Interferences in Gases 380
- 9.7 Atomic Emission Methodology 383
- 9.8 Atomic Absorption Methodology 385
- The Light Source in Atomic Absorption 386
- 9.9 Background Correction 389
- 9.10 Bulk Analysis Without Atomization 392
9.11 X-ray Methods of Analysis 392
 Nomenclature of X-ray Radiation 392
 Absorption of X-rays 393
 Mass Absorption Coefficients 397
 Spurious Peaks and Anomalous Fluorescence Intensities 399
 Proton-Induced X-ray Fluorescence (PIXE) 399

9.12 Neutron Activation Analysis 400

9.13 Furnace or Plasma? Absorption or Emission?
 Optical, X-ray, γ-ray? Which to Use? 404

9.14 Surface-Sensitive Spectrometries 406

9.15 Photoelectron and Auger Spectroscopies 409
 Electrons Emitted from Samples 409
 Which Electrons Are Emitted? 411
 Auger Emission Spectrometry (AES) 412
 Auger Nomenclature 415

9.16 Rutherford Backscattering 416

A DEEPER LOOK

9A Emission and Absorption Spectra and the
Boltzmann Distribution 419
 Temperature Fluctuations and Noise 423

9B Doppler Spectroscopic Line Broadening 424

9C Wavelength-Dispersive X-ray Spectrometers (WDX) 427

9D Energy-Dispersive X-ray Spectrometers (EDX) 429

9E Electron Spectrometers 430

Suggestions for Further Reading 432 • Exercises 433

CHAPTER

Infrared and Raman Spectrometries: Vibrational Spectrometries

10.1 Introduction 439
 Infrared Spectra 439

10.2 Vibrational Frequencies 441

10.3 Normal Vibrational Modes 445

10.4 Qualitative Information from IR Spectra 448

10.5 Raman Spectra 452

10.6 Samples for Infrared and Raman Spectrometries 455
 Samples for Infrared Spectrometry 455
 Samples for Raman Spectrometry 456

10.7 Band Intensities of Vibrational Spectra 458

10.8 Quantitation 461

10.9 Infrared and Raman Microspectrometry 462

A DEEPER LOOK

10A Raman Spectrometers 463

10B Characteristic Frequencies 466

Suggestions for Further Reading 472 • Exercises 472
CHAPTER 11
Nuclear Magnetic Resonance Spectrometry

11.1 Introduction 477
11.2 General Principles of NMR 477
 Signal Magnitude and Concentration 480
11.3 Chemical Shifts: Origins and Values 482
 Origin of σ, the Shielding Parameter 482
11.4 Nuclear Equivalence and Inequivalence 486
11.5 Nuclear Spin–Nuclear Spin Interaction 487
 The Heights and Areas of Split Peaks 490
 General Splitting Patterns 491
 Some Complications 493
 Splitting by More Than One Set of Equivalent Nuclei 496
 Spin-Spin Splitting from Nonresonant Nuclei 499
11.6 13C-NMR 499
11.7 Quantitation 501
11.8 NMR of Solids 504
11.9 Multidimensional NMR 505

A DEEPER LOOK
11A NMR Instruments and Samples 507

Suggestions for Further Reading 510 • Exercises 511

CHAPTER 12
Mass Spectrometry

12.1 Introduction 515
12.2 Mass Spectra and the Mass-to-Charge Ratio 518
12.3 Analysis of Organic-Molecule Mass Spectra 518
 Identify the Molecular Ion 519
 Study the Isotope Distribution Patterns 520
 Explain the Fragmentation Patterns 523
12.4 Mass Spectral Resolving Power and Spectral Resolution 525
12.5 Exact Masses and Chemical Formula Determination 526
12.6 Sequential Mass Spectrometry: MS/MS 528
12.7 Separations/Mass Spectrometry 529
12.8 High-Mass Mass Spectrometry 533
12.9 Spatial Distribution by Mass Spectrometry 536
12.10 The Variety of Ion Sources 540
 Common Factors in Ion Sources: Stability, Control of Ion Motion 540
 Electron Ionization (EI) and Chemical Ionization (CI) 542
 Electrospray (ES, ESI) 543
 Inductively Coupled Plasma Source (ICP) 548
 Pulsed-Laser-Based Sources 550
 Fast-Atom Bombardment (FAB) 550
Contents xiii

Ion Impact Desorption/Ionization: SIMS, Plasma Desorption, Glow Discharge, Sputtered Neutrais 552
Thermal Ionization 555

12.11 Mass Analyzers for Mass Spectrometry 555
Magnetic Sector 556
Double Sector 556
Quadrupole Mass Filter 557
Quadrupole Ion Trap 559
Time-of-Flight 560
Fourier Transform Mass Spectrometry (Fourier Transform Ion Cyclotron Resonance) 562

12.12 High-Precision Analyses by Mass Spectrometry: Isotope Dilution 565
The Equation of Mass Spectral Isotope Dilution Analysis 566

A DEEPER LOOK

12A Natural Isotopic Abundances 568

Suggestions for Further Reading 569 • Exercises 570

CHAPTER

13 General Introduction to Separations and Chromatography

13.1 The Chromatography Experiment 577
13.2 Nomenclature of Chromatographic Separations 579
13.3 Descriptions of Experimental Chromatograms 580
13.4 Parameters of Chromatography 581
Parameters for Individual Bands 582
Efficiency 583
Parameters Describing Pairs of Bands 584
Comparing Column Efficiencies 587
Mass Resolution versus Peak Resolution 587
13.5 Quantitation in Chromatography 589
Loss of Material on the Column 589
Detector Response 590
Quantitation Techniques 590
13.6 Explaining Chromatographic Separations 592
Extractions 592
Sample Loading 593
K_D and Elution Times 594
A More Complete Model 596
13.7 Zone Broadening: The van Deemter Equation 598
Zone Broadening in More Detail 601
The Broadening Process Accounted for by B/\bar{u} 601
The Broadening Process Accounted for by $C\bar{u}$ 602
Packing of the Stationary Phase and the A-term 604
13.8 Improving Separations 606
Varying N by Changing the Flow Rate 607
Chapter

Liquid Chromatography

14.1 Types of Liquid Chromatography 629
14.2 Normal-Phase Liquid Chromatography 630
14.3 Reversed-Phase Liquid Chromatography 633
14.4 Ion-Exchange Liquid Chromatography (Ion Chromatography) 636
 Ion Chromatography 638
 Ion-Pairing Chromatography 641
14.5 Size-Exclusion Liquid Chromatography 641
14.6 Chiral Separations 644
14.7 Gradients 645
14.8 Effects of Temperature 648
14.9 Particle Size, Column Size, Pressure, and HETP 650
14.10 Detectors for Column LC 653
 UV-Visible Adsorption Detectors 654
 Fluorescence Detectors 656
 Differential Refractive Index Detector 656
 Amperometric Detector 658
 Conductivity Detector 659
 Evaporative Light Scattering (ELS) 659
 Light Scattering in Liquids 661
 Viscometric Detector for Polymer Solutions 662
14.11 Batch Separations 663
14.12 Planar Chromatography 664
 High-Performance Thin-Layer Chromatography 664
 Detection and Quantitation for TLC 666

Suggestions for Further Reading 668 • Exercises 669
15.1 Comparison between Gas, Supercritical Fluid, and Liquid Chromatographies 673
15.2 The Nomenclature of Gas Chromatography 674
15.3 Samples Analyzed 675
15.4 Sample Introduction, Splitters, and Columns 676
15.5 Detectors for Gas Chromatography 686
15.6 Supercritical Fluid Chromatography 694

A DEEPER LOOK
15A Stationary Phases for Gas Liquid Chromatography: Classification Schemes 696
15B Optimization of Gas Chromatography Separations 701

Suggestions for Further Reading 705 • Exercises 705

16.1 The Basis of Electroseparations 709
16.2 Negative, Neutral, or Positive? 711
16.3 Electrophoretic Separations within a Gel Matrix 713
The Gels 713
Some Modes of Operation 715
Improving the Resolution 716

16.4 Some Detection Methods for Gel Electrophoresis 717
16.5 Isoelectric Focusing 720
16.6 Capillary Electrophoresis 721
 Temperature Differences and Convection 722
 Electroosmotic Flow in Capillaries 724
 Efficiency 727
 Resolution 728
 Sample Injection 728
 Modes of Operation 729
 Detection 729
16.7 Micellar Electrokinetic Capillary Chromatography 730
16.8 Ion Mobility Spectrometry 733

A DEEPER LOOK
16A The Origin of Electroosmotic Flow 736

Suggestions for Further Reading 737 • Exercises 738

17.1 Digitization 741
 Resolution 741
 Least and Most Significant Bits 744
17.2 Signal Averaging 746
17.3 Time and Frequency: How Often to Sample the Voltage 748
 Eliminating Aliasing with Filters 749
 When an Anti-Aliasing Filter Is Not Needed 751
17.4 Time and Frequency: How They Are Related 752
 Adding Together and Extracting Sine Waves 753
 Mathematical Preliminaries: Fourier Transforms 755
 Complex Variables: A Convenient Shorthand Notation 756
 The Inverse Transform 757
17.5 Frequencies, Filters, and Aliasing 757
17.6 Digression on the Characteristics of Noise in Spectrometry 759
 Fluctuation Noise ($\propto I$) and Photon Emission Noise ($\propto I^{1/2}$) 761
 Multichannel is Not Multiplex 762
 A Simple Example of Multiplexing 762
 Multiplexing in Infrared Spectrometry 763
 Spectral Elements 763
 Distributions of Noise 765
 How to Get Enough Signal 765
17.7 Some Instrument Principles 767
 Power Brought to the Detector 767
 "Instantaneous" Collection of Spectra 768
 Resolution, S/N, and Data Collection Time 768
 Sampling Time, Digital Resolution, and Spectral Range 769
17.8 The Experimental Uses of Fourier Transforms 773
 FT-NMR 773
 FT-Mass Spectrometry 775
 FT-IR 777
 Digital Resolution and the Maximum Retardation 780
 The Throughput Advantage 780
 The Multiplex Advantage 780
 Precautions 781

A DEEPER LOOK
17A The Phasor Representation of Voltage 781
17B The Fourier Transform of a Transient Signal 783
 Apodization (Windowing) 785

Suggestions for Further Reading 786 • Exercises 786

C H A P T E R

Kinetic Methods

18.1 The Chemistries of Kinetic Analyses 789
18.2 Why Kinetic Methods? 789
18.3 A Brief Review of the Mathematics of Rates of Reactions, Decay
 Times, and Half-Lives 790
18.4 Assay Kinetics and Assay Types 794
 The Catalytic Method 795
 The Direct Method 796
18.5 Methods for Determining $[A]_0$ or $k_{\text{catalytic}}$ from Rates 796
 The Derivative Method 797
 Fixed-Time Method 798
 Variable-Time Method 800

A DEEPER LOOK
18A Obtaining Simple Kinetic Behavior 802
 Pseudo First-Order Behavior 803
 Pseudo Zero-Order Behavior 804

Suggestions for Further Reading 804 • Concept Review 805 • Exercises 805

Appendices 808
Answers 828
Index 831