The Scientist and Engineer’s Guide to
Digital Signal Processing

by
Steven W. Smith

California Technical Publishing
San Diego, California
Table of Contents

FOUNDATIONS

Chapter 1. The Breadth and Depth of DSP

- The Roots of DSP 1
- Telecommunications 4
- Audio Processing 5
- Echo Location 7
- Imaging Processing 9

Chapter 2. Statistics, Probability and Noise

- Signal and Graph Terminology 11
- Mean and Standard Deviation 13
- Signal vs. Underlying Process 17
- The Histogram, Pmf and Pdf 19
- The Normal Distribution 26
- Digital Noise Generation 29
- Precision and Accuracy 32

Chapter 3. ADC and DAC

- Quantization 35
- The Sampling Theorem 39
- Digital-to-Analog Conversion 44
- Analog Filters for Data Conversion 48
- Selecting the Antialias Filter 55
- Multirate Data Conversion 58
- Single Bit Data Conversion 60

Chapter 4. DSP Software

- Computer Numbers 67
- Fixed Point (Integers) 68
- Floating Point (Real Numbers) 70
- Number Precision 72
- Execution Speed: Program Language 76
- Execution Speed: Hardware 80
- Execution Speed: Programming Tips 84
FUNDAMENTALS

Chapter 5. Linear Systems 87
 Signals and Systems 87
 Requirements for Linearity 89
 Static Linearity and Sinusoidal Fidelity 92
 Examples of Linear and Nonlinear Systems 94
 Special Properties of Linearity 96
 Superposition: the Foundation of DSP 98
 Common Decompositions 100
 Alternatives to Linearity 104

Chapter 6. Convolution 107
 The Delta Function and Impulse Response 107
 Convolution 108
 The Input Side Algorithm 112
 The Output Side Algorithm 116
 The Sum of Weighted Inputs 122

Chapter 7. Properties of Convolution 123
 Common Impulse Responses 123
 Mathematical Properties 132
 Correlation 136
 Speed 140

Chapter 8. The Discrete Fourier Transform 141
 The Family of Fourier Transforms 141
 Notation and Format of the real DFT 146
 The Frequency Domain’s Independent Variable 148
 DFT Basis Functions 150
 Synthesis, Calculating the Inverse DFT 152
 Analysis, Calculating the DFT 156
 Duality 160
 Polar Notation 160
 Polar Nuisances 163

Chapter 9. Applications of the DFT 169
 Spectral Analysis of Signals 169
 Frequency Response of Systems 176
 Convolution via the Frequency Domain 179

Chapter 10. Fourier Transform Properties 185
 Linearity of the Fourier Transform 185
 Characteristics of the Phase 188
Periodic Nature of the DFT 194
Compression and Expansion, Multirate methods 200
Multiplying Signals (Amplitude Modulation) 204
The Discrete Time Fourier Transform 206
Parseval’s Relation 208

Chapter 11. Fourier Transform Pairs 209
 Delta Function Pairs 209
 The Sinc Function 212
 Other Transform Pairs 215
 Gibbs Effect 218
 Harmonics 220
 Chirp Signals 222

Chapter 12. The Fast Fourier Transform 225
 Real DFT Using the Complex DFT 225
 How the FFT Works 228
 FFT Programs 233
 Speed and Precision Comparisons 237
 Further Speed Increases 238

Chapter 13. Continuous Signal Processing 243
 The Delta Function 243
 Convolution 246
 The Fourier Transform 252
 The Fourier Series 255

DIGITAL FILTERS

Chapter 14. Introduction to Digital Filters 261
 Filter Basics 261
 How Information is Represented in Signals 265
 Time Domain Parameters 266
 Frequency Domain Parameters 268
 High-Pass, Band-Pass and Band-Reject Filters 271
 Filter Classification 274

Chapter 15. Moving Average Filters 277
 Implementation by Convolution 277
 Noise Reduction vs. Step Response 278
 Frequency Response 280
 Relatives of the Moving Average Filter 280
 Recursive Implementation 282
Chapter 16. Windowed-Sinc Filters 285
 Strategy of the Windowed-Sinc 285
 Designing the Filter 288
 Examples of Windowed-Sinc Filters 292
 Pushing it to the Limit 293

Chapter 17. Custom Filters 297
 Arbitrary Frequency Response 297
 Deconvolution 300
 Optimal Filters 307

Chapter 18. FFT Convolution 311
 The Overlap-Add Method 311
 FFT Convolution 312
 Speed Improvements 316

Chapter 19. Recursive Filters 319
 The Recursive Method 319
 Single Pole Recursive Filters 322
 Narrow-band Filters 326
 Phase Response 328
 Using Integers 332

Chapter 20. Chebyshev Filters 333
 The Chebyshev and Butterworth Responses 333
 Designing the Filter 334
 Step Response Overshoot 338
 Stability 339

Chapter 21. Filter Comparison 343
 Match #1: Analog vs. Digital Filters 343
 Match #2: Windowed-Sinc vs. Chebyshev 346
 Match #3: Moving Average vs. Single Pole 348

APPLICATIONS

Chapter 22. Audio Processing 351
 Human Hearing 351
 Timbre 355
 Sound Quality vs. Data Rate 358
 High Fidelity Audio 359
 Companding 362
Chapter 23. Image Formation and Display 373
 Digital Image Structure 373
 Cameras and Eyes 376
 Television Video Signals 384
 Other Image Acquisition and Display 386
 Brightness and Contrast Adjustments 387
 Grayscale Transforms 390
 Warping 394

Chapter 24. Linear Image Processing 397
 Convolution 397
 3x3 Edge Modification 402
 Convolution by Separability 404
 Example of a Large PSF: Illumination Flattening 407
 Fourier Image Analysis 410
 FFT Convolution 416
 A Closer Look at Image Convolution 418

Chapter 25. Special Imaging Techniques 423
 Spatial Resolution 423
 Sample Spacing and Sampling Aperture 430
 Signal-to-Noise Ratio 432
 Morphological Image Processing 436
 Computed Tomography 442

Chapter 26. Neural Networks (and more!) 451
 Target Detection 451
 Neural Network Architecture 458
 Why Does it Work? 463
 Training the Neural Network 465
 Evaluating the Results 473
 Recursive Filter Design 476

Chapter 27. Data Compression 481
 Data Compression Strategies 481
 Run-Length Encoding 483
 Huffman Encoding 484
 Delta Encoding 486
 LZW Compression 488
 JPEG (Transform Compression) 494
 MPEG 501
COMPLEX TECHNIQUES

Chapter 28. Complex Numbers 503
 The Complex Number System 503
 Polar Notation 507
 Using Complex Numbers by Substitution 509
 Complex Representation of Sinusoids 511
 Complex Representation of Systems 513
 Electrical Circuit Analysis 515

Chapter 29. The Complex Fourier Transform 519
 The Real DFT 517
 Mathematical Equivalence 521
 The Complex DFT 523
 The Family of Fourier Transforms 528
 Why the Complex Fourier Transform is Used 532

Chapter 30. The Laplace Transform 533
 The Nature of the s-Domain 533
 Strategy of the Laplace Transform 540
 Analysis of Electric Circuits 544
 The Importance of Poles and Zeros 549
 Filter Design in the s-Domain 552

Chapter 31. The z-Transform 557
 The Nature of the z-Domain 557
 Analysis of Recursive Systems 562
 Cascade and Parallel Stages 568
 Spectral Inversion 571
 Gain Changes 573
 Chebyshev-Butterworth Filter Design 575
 The Best and Worst of DSP 582

Study Guide 583

Glossary 607

Index 619