CONTENTS

PRE-HILBERT SPACES 46
3.2 Inner Products 46
3.3 The Projection Theorem 49
3.4 Orthogonal Complements 52
3.5 The Gram-Schmidt Procedure 53

APPROXIMATION 55
3.6 The Normal Equations and Gram Matrices 55
3.7 Fourier Series 58
*3.8 Complete Orthonormal Sequences 60
3.9 Approximation and Fourier Series 62

OTHER MINIMUM NORM PROBLEMS 64
3.10 The Dual Approximation Problem 64
*3.11 A Control Problem 68
3.12 Minimum Distance to a Convex Set 69
3.13 Problems 72
References 77

4 LEAST-SQUARES ESTIMATION 78
4.1 Introduction 78
4.2 Hilbert Space of Random Variables 79
4.3 The Least-Squares Estimate 82
4.4 Minimum-Variance Unbiased Estimate (Gauss-Markov Estimate) 84
4.5 Minimum-Variance Estimate 87
4.6 Additional Properties of Minimum-Variance Estimates 90
4.7 Recursive Estimation 93
4.8 Problems 97
References 102

5 DUAL SPACES 103
5.1 Introduction 103

LINEAR FUNCTIONALS 104
5.2 Basic Concepts 104
5.3 Duals of Some Common Banach Spaces 106

EXTENSION FORM OF THE HAHN-BANACH THEOREM 110
5.4 Extension of Linear Functionals 110
5.5 The Dual of $C[a, b]$ 113
5.6 The Second Dual Space 115
5.7 Alignment and Orthogonal Complements 116
CONTENTS xi

5.8 Minimum Norm Problems 118
5.9 Applications 122
*5.10 Weak Convergence 126

GEOMETRIC FORM OF THE HAHN-BANACH THEOREM 129

5.11 Hyperplanes and Linear Functionals 129
5.12 Hyperplanes and Convex Sets 131
*5.13 Duality in Minimum Norm Problems 134
5.14 Problems 137
References 142

6 LINEAR OPERATORS AND ADJOINTS 143

6.1 Introduction 143
6.2 Fundamentals 143

INVERSE OPERATORS 147

6.3 Linearity of Inverses 147
6.4 The Banach Inverse Theorem 148

ADJOINTS 150

6.5 Definition and Examples 150
6.6 Relations between Range and Nullspace 155
6.7 Duality Relations for Convex Cones 157
*6.8 Geometric Interpretation of Adjoints 159

OPTIMIZATION IN HILBERT SPACE 160

6.9 The Normal Equations 160
6.10 The Dual Problem 161
6.11 Pseudoinverse Operators 163
6.12 Problems 165
References 168

7 OPTIMIZATION OF FUNCTIONALS 169

7.1 Introduction 169

LOCAL THEORY 171

7.2 Gateaux and Fréchet Differentials 171
7.3 Fréchet Derivatives 175
7.4 Extrema 177
*7.5 Euler-Lagrange Equations 179
*7.6 Problems with Variable End Points 183
7.7 Problems with Constraints 185
CONTENTS

GLOBAL THEORY 190
7.8 Convex and Concave Functionals 190
*7.9 Properties of the Set \([f, C]\) 192
7.10 Conjugate Convex Functionals 195
7.11 Conjugate Concave Functionals 199
7.12 Dual Optimization Problems 200
*7.13 Min-Max Theorem of Game Theory 206
7.14 Problems 209
References 212

8 GLOBAL THEORY OF CONSTRAINED OPTIMIZATION 213
8.1 Introduction 213
8.2 Positive Cones and Convex Mappings 214
8.3 Lagrange Multipliers 216
8.4 Sufficiency 219
8.5 Sensitivity 221
8.6 Duality 223
8.7 Applications 226
8.8 Problems 236
References 238

9 LOCAL THEORY OF CONSTRAINED OPTIMIZATION 239
9.1 Introduction 239

LAGRANGE MULTIPLIER THEOREMS 240
9.2 Inverse Function Theorem 240
9.3 Equality Constraints 242
9.4 Inequality Constraints (Kuhn-Tucker Theorem) 247

OPTIMAL CONTROL THEORY 254
9.5 Basic Necessary Conditions 254
*9.6 Pontryagin Maximum Principle 261
9.7 Problems 266
References 269

10 ITERATIVE METHODS OF OPTIMIZATION 271
10.1 Introduction 271

METHODS FOR SOLVING EQUATIONS 272
10.2 Successive Approximation 272
10.3 Newton's Method 277
CONTENTS

DESCENT METHODS 283
10.4 General Philosophy 283
10.5 Steepest Descent 285

CONJUGATE DIRECTION METHODS 290
10.6 Fourier Series 290
*10.7 Orthogonalization of Moments 293
10.8 The Conjugate Gradient Method 294

METHODS FOR SOLVING CONSTRAINED PROBLEMS 297
10.9 Projection Methods 297
10.10 The Primal-Dual Method 299
10.11 Penalty Functions 302
10.12 Problems 308
 References 311

SYMBOL INDEX 321

SUBJECT INDEX 323