Contents

Foreword xi
Preface: About this Book xiii

1 Introduction 1
 1.1 What is Computer Vision? 1
 1.2 The Many Faces of Computer Vision 2
 1.2.1 Related Disciplines, 2
 1.2.2 Research and Application Areas, 3
 1.3 Exploring the Computer Vision World 4
 1.3.1 Conferences, Journals, and Books, 4
 1.3.2 Internet, 6
 1.3.3 Some Hints on Math Software, 11
 1.4 The Road Ahead 11

2 Digital Snapshots 15
 2.1 Introduction 16
 2.2 Intensity Images 16
 2.2.1 Main Concepts, 16
 2.2.2 Basic Optics, 18
 2.2.3 Basic Radiometry, 22
 2.2.4 Geometric Image Formation, 26
 2.3 Acquiring Digital Images 28
 2.3.1 Basic Facts, 28
 2.3.2 Spatial Sampling, 31
 2.3.3 Acquisition Noise and How to Estimate It, 32
 2.4 Camera Parameters 34
 2.4.1 Definitions, 34
 2.4.2 Extrinsic Parameters, 35
7.3.5 Computing E and F: The Eight-point Algorithm, 155
7.3.6 Locating the Epipoles from E and F, 156
7.3.7 Rectification, 157

7.4 3-D Reconstruction 161
 7.4.1 Reconstruction by Triangulation, 162
 7.4.2 Reconstruction up to a Scale Factor, 164
 7.4.3 Reconstruction up to a Projective Transformation, 166

7.5 Summary 171
7.6 Further Readings 171
7.7 Review 172

8 Motion 177

8.1 Introduction 178
 8.1.1 The Importance of Visual Motion, 178
 8.1.2 The Problems of Motion Analysis, 180

8.2 The Motion Field of Rigid Objects 183
 8.2.1 Basics, 183
 8.2.2 Special Case 1: Pure Translation, 185
 8.2.3 Special Case 2: Moving Plane, 187
 8.2.4 Motion Parallax, 188
 8.2.5 The Instantaneous Epipole, 191

8.3 The Notion of Optical Flow 191
 8.3.1 The Image Brightness Constancy Equation, 192
 8.3.2 The Aperture Problem, 192
 8.3.3 The Validity of the Constancy Equation: Optical Flow, 194

8.4 Estimating the Motion Field 195
 8.4.1 Differential Techniques, 195
 8.4.2 Feature-based Techniques, 198

8.5 Using the Motion Field 203
 8.5.1 3-D Motion and Structure from a Sparse Motion Field, 203
 8.5.2 3-D Motion and Structure from a Dense Motion Field, 208

8.6 Motion-based Segmentation 212
8.7 Summary 215
8.8 Further Readings 215
8.9 Review 216

9 Shape from Single-image Cues 219

9.1 Introduction 220
9.2 Shape from Shading 221
 9.2.1 The Reflectance Map, 221
 9.2.2 The Fundamental Equation, 223

9.3 Finding Albedo and Illuminant Direction 226
 9.3.1 Some Necessary Assumptions, 226
 9.3.2 A Simple Method for Lambertian Surfaces, 227
9.4 A Variational Method for Shape from Shading 229
 9.4.1 The Functional to be Minimized, 229
 9.4.2 The Euler-Lagrange Equations, 230
 9.4.3 From the Continuous to the Discrete Case, 231
 9.4.4 The Algorithm, 231
 9.4.5 Enforcing Integrability, 232
 9.4.6 Some Necessary Details, 234
9.5 Shape from Texture 235
 9.5.1 What is Texture?, 235
 9.5.2 Using Texture to Infer Shape: Fundamentals, 237
 9.5.3 Surface Orientation from Statistic Texture, 239
 9.5.4 Concluding Remarks, 241
9.6 Summary 241
9.7 Further Readings 242
9.8 Review 242

10 Recognition 247

 10.1 What Does it Mean to Recognize? 248
 10.2 Interpretation Trees 249
 10.2.1 An Example, 251
 10.2.2 Wild Cards and Spurious Features, 253
 10.2.3 A Feasible Algorithm, 253
 10.3 Invariants 255
 10.3.1 Introduction, 255
 10.3.2 Definitions, 256
 10.3.3 Invariant-Based Recognition Algorithms, 259
 10.4 Appearance-Based Identification 262
 10.4.1 Images or Features?, 262
 10.4.2 Image Eigenspaces, 264
 10.5 Concluding Remarks on Object Identification 270
 10.6 3-D Object Modelling 270
 10.6.1 Feature-based and Appearance-based Models, 271
 10.6.2 Object Versus Viewer-centered Representations, 272
 10.6.3 Concluding Remarks, 273
 10.7 Summary 273
 10.8 Further Readings 274
 10.9 Review 275

11 Locating Objects in Space 279

 11.1 Introduction 280
 11.2 Matching from Intensity Data 283
 11.2.1 3-D Location from a Perspective Image, 283
 11.2.2 3-D Location from a Weak-perspective Image, 288
 11.2.3 Pose from Ellipses, 292
11.2.4 Concluding Remarks, 294
11.3 Matching from Range Data 294
 11.3.1 Estimating Translation First, 296
 11.3.2 Estimating Rotation First, 300
 11.3.3 Concluding Remarks, 301
11.4 Summary 302
11.5 Further Readings 302
11.6 Review 303

A Appendix 307
 A.1 Experiments: Good Practice Hints 307
 A.2 Numerical Differentiation 311
 A.3 The Sampling Theorem 314
 A.4 Projective Geometry 316
 A.5 Differential Geometry 320
 A.6 Singular Value Decomposition 322
 A.7 Robust Estimators and Model Fitting 326
 A.8 Kalman Filtering 328
 A.9 Three-dimensional Rotations 332

Index 335