Superconductivity

J. B. KETTerson and S. N. SONG
Northwestern University
Contents

Preface xiii

Part I Phenomenological theories of superconductivity 1

1 Introduction 1
2 The London–London equation 5
3 Pippard’s equation 8
4 Thermodynamics of a Type I superconductor 12
5 The intermediate state 15
6 Surface energy between a normal and a superconducting metal 17
7 Quantized vorticity 19
8 Type II superconductivity 24
 8.1 Magnetic fields slightly greater than \(H_{c1} \) 24
 8.2 The region \(H_{c1} < < H < < H_{c2} \) 27
 8.3 Microscopic magnetic probes of the mixed state 29
9 The Ginzburg–Landau theory 31
 9.1 Basic equations 31
 9.2 Gauge invariance 35
 9.3 Boundaries and boundary conditions 36
10 The upper critical field of a Type II superconductor 43
11 The anisotropic superconductor 45
12 Thin superconducting slabs 47
13 Surface superconductivity 50
14 The Type II superconductor for \(H \) just below \(H_{c2} \) 52
15 The Josephson effects 59
 15.1 The Josephson equations 59
 15.2 Magnetic field effects: the two-junction SQUID 61
 15.3 The extended Josephson junction 64
 15.4 Effect of an applied rf field 65
 15.5 The resistively shunted junction (RSJ) model 66
 15.6 The rf biased SQUID 73
16 The Josephson lattice in 1D 77
17 Vortex structure in layered superconductors 82
 17.1 3D anisotropic London model 82
Contents

17.2 Lawrence–Doniach model 85
17.3 Vortex structure in a 2D film 87

18 Granular superconductors: the Josephson lattice in 2D and 3D 91

19 Wave propagation in Josephson junctions, superlattices, and arrays 95
 19.1 Wave propagation in a junction 95
 19.2 Wave propagation in a superlattice 104
 19.3 The Josephson transmission line 108

20 Flux pinning and flux motion 110
 20.1 Nonideal Type II superconductors 110
 20.2 Microscopic description 111
 20.3 The Lorentz force 113
 20.4 Pinning centers and pinning forces 115
 20.4.1 The core interaction 116
 20.4.2 Surface magnetic interaction 117
 20.4.3 Summation of the pinning forces 118
 20.5 The equation of motion 118
 20.6 The critical state 120
 20.7 The elastic constants of a flux-line lattice 123
 20.8 Collective flux pinning 127
 20.9 Mechanisms of flux motion 131
 20.10 Relaxation of the magnetization with time 134
 20.11 Phase diagram of high \(T_c \) oxide superconductors 137

21 Time-dependent G–L theory 140

22 Fluctuation effects 144
 22.1 The Ginzburg criterion 144
 22.2 The diamagnetic susceptibility for \(T > T_c \) 147
 22.3 Paraconductivity for \(T > T_c \) 149

23 G–L theory of an unconventional superfluid 152
 23.1 The order parameter of an unconventional superfluid 154
 23.1.1 Superfluid \(^3\)He: isotropic p-wave pairing 154
 23.1.2 Isotropic d-wave pairing 157
 23.2 Crystal-field and spin–orbit effects 158
 23.3 The G–L theory of an unconventional superfluid 163
 23.3.1 G–L theory for \(^3\)He 163
 23.3.2 G–L theory for an isotropic d-paired superfluid 168
 23.3.3 Unconventional G–L theory in metals 168
 23.4 Inhomogeneities in the order parameter 171
 23.5 Collective modes in an unconventional superfluid 172
 23.5.1 Collective modes of \(^3\)He B 173
 23.5.2 \(E \) state collective modes 177

24 Landau Fermi liquid theory 180
 24.1 Basic equations 180
 24.2 Collisionless collective modes 187
 24.2.1 The kinetic equation 187
 24.2.2 Collisionless longitudinal zero sound 189
Part II

The microscopic theory of a uniform superconductor

25 The Cooper problem: pairing of two electrons above a filled Fermi sea 195
26 The BCS theory of the superconducting ground state 199
27 Elementary excitations: the Bogoliubov–Valatin transformation 208
28 Calculation of the thermodynamic properties using the Bogoliubov–Valatin method 212
29 Quasiparticle tunneling 216
30 Pair tunneling: the microscopic theory of the Josephson effects 222
31 Simplified discussion of pairing mechanisms 230
31.1 The electron–phonon interaction 230
31.2 The spin fluctuation mechanism 234
32 The effect of Coulomb repulsion on T_c 240
33 The two-band superconductor 243
34 Time-dependent perturbations 245
34.1 Ultrasonic attenuation 248
34.2 Nuclear spin relaxation 248
35 Nonequilibrium superconductivity 251
35.1 Elastic and inelastic scattering processes 251
35.2 Quasiparticle and phonon populations in a nonequilibrium superconductor 254

Part III

Nonuniform superconductivity

36 Bogoliubov's self-consistent potential equations 257
37 Self-consistency conditions and the free energy 262
38 Linearized self-consistency condition and the correlation function 265
38.1 Treating the gap function as a perturbation 265
38.2 Relation to a correlation function 267
39 Behavior of the correlation function in the clean and dirty limits 272
39.1 A simple model for the clean limit 272
39.2 The dirty limit 273
39.3 The general case 275
40 The self-consistency condition 277
40.1 The dirty limit at zero magnetic field 277
40.2 The dirty limit at finite magnetic field 279
40.3 The clean limit at zero magnetic field 282
41 Effects involving electron spin 284
41.1 Spin generalized Bogoliubov equations 284
41.2 The density matrix 286
41.3 The linearized gap equation 288
41.4 Spin-dependent potentials 289
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.5</td>
<td>Paramagnetic impurities, electron paramagnetism, and spin–orbit coupling</td>
<td>290</td>
</tr>
<tr>
<td>41.6</td>
<td>The Fulde–Ferrell state</td>
<td>293</td>
</tr>
<tr>
<td>41.7</td>
<td>Gapless superconductivity</td>
<td>295</td>
</tr>
<tr>
<td>42</td>
<td>Boundary conditions</td>
<td>298</td>
</tr>
<tr>
<td>43</td>
<td>The proximity effect at zero field</td>
<td>304</td>
</tr>
<tr>
<td>43.1</td>
<td>Governing equations</td>
<td>304</td>
</tr>
<tr>
<td>43.2</td>
<td>The thin-film (Cooper–deGennes) limit</td>
<td>306</td>
</tr>
<tr>
<td>43.3</td>
<td>The general 1D case</td>
<td>307</td>
</tr>
<tr>
<td>43.4</td>
<td>A microscopic theory of the 1D Josephson superlattice</td>
<td>314</td>
</tr>
<tr>
<td>44</td>
<td>The proximity effect in a magnetic field</td>
<td>316</td>
</tr>
<tr>
<td>44.1</td>
<td>Governing equations in the presence of magnetic fields, spin susceptibility, paramagnetic impurities, and spin–orbit coupling</td>
<td>316</td>
</tr>
<tr>
<td>44.2</td>
<td>Representative numerical solutions</td>
<td>321</td>
</tr>
<tr>
<td>45</td>
<td>Derivation of the G–L theory</td>
<td>326</td>
</tr>
<tr>
<td>45.1</td>
<td>The first G–L equation</td>
<td>326</td>
</tr>
<tr>
<td>45.2</td>
<td>The gradient term in the clean limit</td>
<td>327</td>
</tr>
<tr>
<td>45.3</td>
<td>The gradient term in the dirty limit</td>
<td>328</td>
</tr>
<tr>
<td>45.4</td>
<td>The gradient term in the general case</td>
<td>329</td>
</tr>
<tr>
<td>45.5</td>
<td>The second G–L equation</td>
<td>330</td>
</tr>
<tr>
<td>46</td>
<td>Gauge invariance: diamagnetism in the low field limit</td>
<td>332</td>
</tr>
<tr>
<td>46.1</td>
<td>Gauge invariance</td>
<td>332</td>
</tr>
<tr>
<td>46.2</td>
<td>The magnetic field as a perturbation</td>
<td>332</td>
</tr>
<tr>
<td>46.3</td>
<td>The diamagnetic current</td>
<td>335</td>
</tr>
<tr>
<td>46.4</td>
<td>Diamagnetism of the superconducting Fermi gas</td>
<td>338</td>
</tr>
<tr>
<td>46.5</td>
<td>Magnetic field behavior near a vacuum–superconductor interface</td>
<td>341</td>
</tr>
<tr>
<td>46.6</td>
<td>Relation between normal-state conductivity and the superconducting diamagnetic response</td>
<td>343</td>
</tr>
<tr>
<td>46.7</td>
<td>Calculations of the diamagnetic response using Chambers’ method</td>
<td>347</td>
</tr>
<tr>
<td>47</td>
<td>The quasiclassical case</td>
<td>350</td>
</tr>
<tr>
<td>47.1</td>
<td>Quasiclassical limit of the Schrödinger equation</td>
<td>350</td>
</tr>
<tr>
<td>47.2</td>
<td>Quasiclassical limit of the Bogoliubov equations</td>
<td>353</td>
</tr>
<tr>
<td>47.3</td>
<td>Andreev scattering</td>
<td>355</td>
</tr>
<tr>
<td>48</td>
<td>The isolated vortex line</td>
<td>360</td>
</tr>
<tr>
<td>48.1</td>
<td>Bogoliubov's equations for the isolated vortex line</td>
<td>360</td>
</tr>
<tr>
<td>48.2</td>
<td>The quasiclassical equations for a vortex line</td>
<td>363</td>
</tr>
<tr>
<td>48.3</td>
<td>A model calculation for the bound core states</td>
<td>365</td>
</tr>
<tr>
<td>49</td>
<td>Time-dependent Bogoliubov equations</td>
<td>369</td>
</tr>
<tr>
<td>49.1</td>
<td>Basic equations</td>
<td>369</td>
</tr>
<tr>
<td>49.2</td>
<td>The time-dependent, linearized, self-consistency condition</td>
<td>370</td>
</tr>
<tr>
<td>49.3</td>
<td>The linearized, time-dependent, G–L equation</td>
<td>372</td>
</tr>
<tr>
<td>50</td>
<td>The response of a superconductor to an electromagnetic field</td>
<td>374</td>
</tr>
</tbody>
</table>