Contents

1 Introduction (by Alexander Zimmermann) 1

2 Basic definitions and some examples (by Steffen König) 5
 2.1 Notations .. 5
 2.2 Complexes .. 5
 2.3 Triangulated categories 8
 2.4 Stable categories ... 13
 2.5 Localization and derived categories 14
 2.6 Examples ... 18
 2.7 Derived functors .. 19
 2.8 Double complexes .. 21
 2.9 The Mittag-Leffler condition 22
 2.10 Invariants of derived categories 24
 2.11 Six examples ... 24
 2.11.1 .. 25
 2.11.2 .. 26
 2.11.3 .. 26
 2.11.4 .. 27
 2.11.5 .. 28
 2.11.6 .. 30

3 Rickard's fundamental theorem (by Steffen König) 33
 3.1 Motivation: History of tilting theory 33
 3.2 Tilting complexes, Rickard's theorem and some examples 35
 3.3 Strategy of the proof 39
 3.4 Construction of F 40
 3.5 F is a full embedding 44
 3.6 Construction of G 45
 3.7 Proof of theorem 3.2.1 48
 3.7.1 Proof of (1) 48
 3.7.2 Proof of (2) 48
 3.7.3 Proof of (3) 49

4 Some modular and local representation theory (by Alexander Zimmermann) 51
 4.1 Motivation .. 51
 4.2 Elementary modular representation theory 52
 4.2.1 Basic definitions and properties 53
8.3 Applications .. 166
8.3.1 Construction of bimodule complexes. 166
8.3.2 Rickard's Morita theorem. 167
8.3.3 Stable categories and DG algebras. 168
8.3.4 Invariance of cyclic homology under derived equivalence. 169

8.4 Appendix: Proof of theorem 8.1.1 172

9 Triangulated Categories in the Modular Representation Theory of
Finite Groups (by Jeremy Rickard) 177
9.1 Introduction and notation 177
9.1.1 Introduction .. 177
9.1.2 Notation .. 178
9.2 Equivalences of derived categories 178
9.2.1 Some remarks on symmetric algebras 179
9.2.2 Derived equivalences between symmetric algebras 183
9.2.3 Derived equivalences between blocks: generalities 184
9.2.4 Derived equivalences between blocks: Broué's conjectures 188
9.2.5 Splendid equivalences 189
9.3 Bousfield localization in the stable module category 193
9.3.1 The stable module category and varieties for modules 193
9.3.2 Bousfield localization 195
9.3.3 Varieties for arbitrary modules 196
9.3.4 The classification of épaisse subcategories of stmod(kP) .. 196

10 The derived category of blocks with cyclic defect groups (by Raphaël
Rouquier) .. 199
10.1 Introduction .. 199
10.2 Miscellany : stable equivalences, Rickard equivalences and more 200
10.2.1 Notations .. 200
10.2.2 Stable category, stable equivalences and invariants 201
10.2.3 Derived category and Rickard equivalences 203
10.2.4 Some more lemmas ... 209
10.3 Blocks stably equivalent to \(OD \rtimes E\) 211
10.3.1 Exceptional characters 211
10.3.2 Decomposition numbers 212
10.3.3 The Brauer tree and its walk 213
10.3.4 Construction of the complex 214
10.4 Local study .. 215
10.4.1 \(O_p(G) = 1\) .. 216
10.4.2 \(O_p(G) \neq 1\) .. 217
10.5 An example : \(PSL_2(p)\) ... 218

11 On stable equivalences of Morita type (by Markus Linckelmann) 221
11.1 Types of equivalences ... 221
11.2 Stable equivalences of Morita type 223
11.3 Stable equivalences and \(p\)-groups 225
11.4 Formal invariants of stable equivalences of Morita type ... 227
11.5 A criterion for tilting complexes 231

Bibliography .. 233
Index .. 244