CONTENTS

Introduction v
Preface vii

1. Introduction 1
   1.1. Purpose and Scope 1
   1.2. Symmetry Groups 1
   1.3. Thermodynamics of Condensed Systems 9
   1.4. Diffraction 11
   1.5. Quantum Mechanics 13
Bibliography 15
Problems 16

2. The Bravais Lattices 17
   2.1. The Space Lattice 17
   2.2. Symmetry of Lattices 18
   2.3. Proper and Improper Rotation Symmetry 19
   2.4. Categories of Lattices 19
      2.4.1. The Monoclinic Lattice 20
      2.4.2. The Centered Monoclinic Lattice 21
      2.4.3. Orthorhombic Symmetry 22
      2.4.4. The Orthorhombic Lattices 23
      2.4.5. The Tetragonal Lattices 23
      2.4.6. The Hexagonal Case 26
      2.4.7. Six-Fold Rotation 27
3.17. The Subgroups of $P6_3/mmc$ in the Crystal Class $D_{2h}$
Arising from Doubling of $a$ 74

Bibliography 75
Problems 77

4. Reciprocal Space 78
4.1. Rotational Symmetry of Reciprocal Space 78
4.2. Lattice Periodicity 78
4.3. Nonintegral Periods 79
4.4. The Brillouin Zone 80
4.5. The Symmetry of the Reciprocal Space 81
4.6. The Group of the Wave Vector 81
4.7. The Group of the Wave Vector at $k = a^*/2$ in $P6_3/mmc$ 82
4.8. Group-Subgroup Relations 83
4.9. Special Points 83
Bibliography 84
Problems 85

5. Irreducible Representations of Space Groups 86
5.1. Representations of the Translational Group 86
5.2. Irreducible Representations of Symmorphic Space Groups 88
5.3. Loaded Representations 88
5.4. Some Irreducible Representations of $P6_3/mmc$ at $k = a^*/2$ 92
5.5. Relationships Between Irreducible Representations
and Subgroups: $P6_3/mmc$ at $a^*/2$ 95
Bibliography 96
Problems 97

6. Landau Theory 98
6.1. The Order Parameter 98
6.2. The Variation of $\eta$ with Thermodynamic State 98
6.3. Single Irreducible Representation Condition 100
6.4. The $\rho$ Expansion 100
6.5. Symmetry Transformation of the $\gamma_i$'s 101
6.6. Lack of First-Order Invariants 102
6.7. Second-Order Invariants 102
6.8. Even-Order Terms 103
6.9. The Third-Order Term 105
6.10. Summary 106
6.11. Invariants of Third and Fourth Order 107
6.12. The Totally Symmetric Small Representation of $Fm3m$ at the $L$ Point 108
6.13. Possible Minima in $G$ 110
6.14. The Symmetries of the Allowed Solutions Corresponding to the Totally Symmetric Small Representation of $Fm3m$ at the $L$ Point 113
6.15. The Lifshitz Condition 115
6.16. Transitions at the $\Gamma$ Point of $m3m$ 117

Bibliography 120
Problems 122

7. Thermodynamics of Condensed Systems 123
7.1. Introduction 123
7.2. Simple Systems 123
7.3. Species and Components 124
7.4. Arbitrary Restraints 124
7.5. Determination of $c$ 125
7.6. Chemical Reaction Thermodynamics 126
7.7. Independent Net Reactions 126
7.8. Number of Independent Net Reactions 127
7.9. Examples Involving Solids 128
7.10. Reactions Involving Only Condensed Phases 132
7.11. Nonstoichiometry 133
7.12. Nonstoichiometry and Gibbs Free Energy 135
7.13. Configurational Entropy 137
7.15. Distribution Equilibria 138
7.16. The Gibbs-Konovalow Equation 142
7.17. Second-Order Phase Transitions 142
7.18. Displacive Transitions 144
7.19. Order-Disorder Transition 144
7.20. Behavior of $c_p$ in the Case of Second-Order Transitions 146

Bibliography 147
Problems 148
8. X-Ray Diffraction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1. X-Ray Diffraction by a Crystal</td>
<td>149</td>
</tr>
<tr>
<td>8.2. Finite Summation and Peak Widths</td>
<td>149</td>
</tr>
<tr>
<td>(The Fresnel Construction)</td>
<td>154</td>
</tr>
<tr>
<td>8.3. Powder Diffraction</td>
<td>157</td>
</tr>
<tr>
<td>8.4. Interplanar Spacing</td>
<td>158</td>
</tr>
<tr>
<td>8.5. Coincident Reflections</td>
<td>159</td>
</tr>
<tr>
<td>8.6. Hexagonal Indexing</td>
<td>159</td>
</tr>
<tr>
<td>8.7. Rhombohedral Indexed as Hexagonal</td>
<td>161</td>
</tr>
<tr>
<td>8.8. Indexing of Powder Patterns</td>
<td>162</td>
</tr>
<tr>
<td>8.9. Least Squares Refinement of Lattice Parameters</td>
<td>164</td>
</tr>
<tr>
<td>8.10. Indexing of Powder Patterns with No Initial Model</td>
<td>166</td>
</tr>
<tr>
<td>8.11. A Hexagonal Example</td>
<td>166</td>
</tr>
<tr>
<td>Bibliography</td>
<td>170</td>
</tr>
<tr>
<td>Problems</td>
<td>171</td>
</tr>
</tbody>
</table>

9. Single Crystal Diffraction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1. Introduction</td>
<td>172</td>
</tr>
<tr>
<td>9.2. The Ewald Sphere</td>
<td>172</td>
</tr>
<tr>
<td>9.3. Rotation with a Cylindrical Film</td>
<td>173</td>
</tr>
<tr>
<td>9.4. Weissenberg Patterns</td>
<td>175</td>
</tr>
<tr>
<td>9.5. Symmetry of Single-Crystal Diffraction Patterns</td>
<td>177</td>
</tr>
<tr>
<td>9.6. Anomalous Scattering</td>
<td>179</td>
</tr>
<tr>
<td>9.7. Fourier Series</td>
<td>180</td>
</tr>
<tr>
<td>9.8. The Phase Problem</td>
<td>180</td>
</tr>
<tr>
<td>9.9. The Direct Method</td>
<td>181</td>
</tr>
<tr>
<td>9.10. Sign Assignment and Origin Location</td>
<td>186</td>
</tr>
<tr>
<td>9.11. The Effect of Centered Cells</td>
<td>187</td>
</tr>
<tr>
<td>9.12. Other Uses of Symmetry in Sign Assignment</td>
<td>188</td>
</tr>
<tr>
<td>9.13. Thermal Motion</td>
<td>188</td>
</tr>
<tr>
<td>Bibliography</td>
<td>189</td>
</tr>
<tr>
<td>Problems</td>
<td>190</td>
</tr>
</tbody>
</table>

10. Electronic Structure

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1. Bloch Functions</td>
<td>191</td>
</tr>
<tr>
<td>10.2. Boundary Conditions</td>
<td>191</td>
</tr>
</tbody>
</table>
10.4. $E(k)$ in the $BZ$. The Nearly Free Electron Model 194
10.5. $E$ vs. $k$: Bonding and Antibonding Interactions 196
10.6. Peierl's Distortion 199
10.7. Compatibility 200
Bibliography 202
Problems 203

11. Order-Disorder Transitions 205
11.1. The $\beta - \beta'$ Brass Transition 205
11.2. $L$ Point Ordering in NaCl Type Solids 207
11.3. Incommensurate Structure 212
Bibliography 216
Problems 217

Appendix 219

Index 275