CONTENTS

Preface ix

1 Theoretical Outline 1
 1.1 Introduction, 1
 1.2 An Example: Fractal Surface Model and Its Fractal Dimension, 2
 Notes and References, 10

2 Fractal Surface Aspects of Adsorption and Permeability 12
 2.1 Introduction and Generalities, 12
 2.2 Analysis of Fractal Surfaces and Pore Structures, 14
 2.3 Fractal Aspects of Physisorption Phenomena, 20
 2.3.1 Gas Adsorption by Microporous Solids, 20
 2.3.2 Gas Adsorption by Zeolites, 24
 2.3.3 Adsorbency of Porous Silica, 26
 2.3.4 Generation of Pore Structure: Dehydration of Gibbsite, 28
 2.3.5 Adsorptivity of Polymers on Porous Fractals, 31
 2.3.6 A Summary, 33
 2.4 Fractal Aspects of Chemisorption Phenomena, 34
 2.4.1 Fractal Scaling Laws for Chemisorption, 35
 2.4.2 Chemisorption of H₂ and CO on Metal Clusters, 36
 2.4.3 Metal Dispersion and Adsorbate Uptake: CO Chemisorption on Pt/γ-Al₂O₃, 38
 2.4.4 A Summary, 40
 Notes and References, 41
3 Fractality in Aggregation and Growth

3.1 Fractal Aspects of Agglomerate Structures, 46
 3.1.1 Application of Gel Formation:
 Size-Exclusion Chromatography, 47
 3.1.2 Application of Diffusion-Limited Aggregation, 50
 3.1.2.1 Image Analysis of Silica Aggregation, 52
 3.1.2.2 Light Scattering Analysis of Soot Agglomerates
 and Processed Brown Coal, 53
 3.1.3 Mass, Surface, Pore Fractal?, 55
 3.1.4 A Summary, 60
3.2 Fractal Aspects of Agglomeration Dynamics, 61
 3.2.1 Electrolytic Deposition, 62
 3.2.1.1 Silver Aggregation under Damped
 Electrolyte Convection, 62
 3.2.1.2 Formation of Dendrites: Palladium Hydride, 65
 3.2.2 Universal Behavior: Growth of Melanin, Colloidal Gold,
 and Humic Acid Aggregates, 68
 3.2.3 A Summary, 71

Notes and References 72

4 Diffusion and Reactions

4.1 Introduction: The Fracton, 76
4.2 Fractality in Dynamically Disordered Systems, 78
 4.2.1 Diffusion-Limited Reaction Systems A + A → Products, 79
 4.2.2 Diffusion-Limited Reaction Systems A + B → Products, 80
 4.2.3 Anomalous Diffusion in a Triblock Copolymer
 During Gelation, 83
 4.2.4 Diffusion-Controlled Reactant Density Fluctuation Kinetics:
 Hydrogen Exchange in Lysozyme–Water, 85
 4.2.5 Sintering of Open Sites on Dispersed Platinum, 87
 4.2.6 A Summary, 89
4.3 The Reaction Dimension, 90
 4.3.1 Particle and Active Site Effects in Catalyzed
 Reaction Rates, 90
 4.3.1.1 Ethylene Epoxidation over Dispersed Silver, 91
 4.3.1.2 Oxidative Dehydrogenation of Propane, 92
 4.3.1.3 Nitrobenzene Hydrogenation over Platinum
 Dispersed on Carbon Cloth, 93
 4.3.1.4 Effect of Platinum Poisoning by Electrolytic Sulfur
 Deposition on Maleic Acid Hydrogenation, 94
 4.3.1.5 Influence of Pore Volume on Cracking Behavior
 of Zeolites, 95
4.3.2 Particle Size Effects in Monomer–Polymer Interactions: Vinyl Chloride and Polyvinyl Chloride, 96
4.3.3 A Summary, 97
Notes and References, 97

5 Spectroscopy of Fractal Systems

5.1 Introduction: General Procedures, 101
5.1.1 Connected Structures in Water, 102
5.1.2 Silica Aggregates: Structure and Dynamics, 105
5.1.2.1 Cationic Surfactant-Induced Flocculation of Silica Spheres, 105
5.1.2.2 Fractons in Silica Aerogels, 107
5.1.3 Electron-Transfer Reaction of the Adsorbed Anthracene Radical Cation, 110
5.2 A Summary, 111
Notes and References, 113

6 Chemical Degradation

6.1 Introduction: Fractal Aspects in Material Deterioration Processes, 116
6.1.1 Ablation: Ruggedness Changes in Food Particles, 116
6.1.2 Surface Roughening by Dissolution, 119
6.1.3 Fractality of Hydrated Cement Paste, 123
6.1.4 Representing Shrinkage by Loss of Plasticizer: Julia Sets, 125
6.2 A Summary, 128
Notes and References, 129

7 Special Fractal Topics in Chemistry

7.1 Fractal Dimensionality and Universal Properties within Systems, 131
7.1.1 Fractal Dimensions of Coroenes, 131
7.1.2 Graph Invariants and Chain Flexibility: n-Alkanes and Halogenated n-Alkanes, 133
7.2 Fractal Aspects in Biochemical Systems, 139
7.2.1 Protein Surfaces: Fractality and Receptor Sites, 139
7.2.2 Aggregation and Self-Diffusion of Globin Hydrolysate, 142
7.3 Fractal Dynamics in Liquid–Solid and Gas–Solid Flows, 144
7.3.1 Horizontal Water Movement in Soils, 144
7.3.2 Circulating Fluidized Bed Reactors, 145
7.4 Hydrocarbon Sorption in Cross-Linked Polymer Systems, 147
7.4.1 Hydrocarbon Sorption by Vulcanized Natural Rubber, 148
7.4.1.1 Aliphatics n-C_6 to n-C_9, 148
7.4.1.2 Benzene and Higher Aromatics, 151
7.4.2 Sorption Kinetics of Aromatics in Urethane-Modified Bismaleimide Elastomers, 153
7.5 Wetting and Porosity: The Water–Paper Towel Experiment, 155
7.6 Fractal Parameters of Premixed Turbulent Lean Flames, 156
7.7 Bifractality: Wear between Processed Metal Surfaces, 162
7.8 Photoablation of Polymer Surfaces, 164
7.9 Surface Roughness and Surface Fractality, 164
Notes and References, 165

8 Fractality and Its Measurements 170

8.1 The Box Counting Method, 170
 8.1.1 Dimension of a Branching Molecule: Dendrimer DAB(CN)$_{64}$, 171
8.2 On Determinants Generating Fractality in Chemistry, 175
8.3 Concluding Remarks, 177
Notes and References, 178

Appendix 1: Table of Frequently Used Dimensions, 180
Appendix 2: List of Fundamental Equations, 181
Appendix 3: List of Figures, 184
Glossary 1: Fractals and Structure, 190
Notes and References, 197
Glossary 2: Fractals and Dynamics, 199
Notes and References, 205
Author Index, 207
Subject Index, 214