INTRODUCTION

Self-Organization in Nonlinear Optics – Kaleidoscope of Patterns – M.A. Vorontsov and W.B. Miller

1. What Is This Book About? 1
2. Nonlinear Optics: The Good Old Times 3
3. The First Model – Kerr-Slice/Feedback Mirror System 3
4. Diffusion, Diffraction, and Spatial Scales 5
5. One More Scheme: The First Step Toward Optical Synergetics 6
6. Nonlocal Interactions; Optical Kaleidoscope of Patterns 7
7. OK-Equation and “Dry Hydrodynamics” 9
8. One More Nonlinear Element: Two-Component Optical Reaction-Diffusion Systems 10
9. Diffraction at Last; Rolls and Hexagons 12
10. Diffraction and Diffraction 13
11. Far Away from Hexagons: Delay in Time and Space 16
12. Diffusion + Diffraction + (Interference) + Nonlocal Interactions = Akhseals 18
References 22

CHAPTER 1

Information Processing and Nonlinear Physics: From Video Pulses to Waves and Structures – S.A. Akhmanov

1. Information Encoding by Carrier Modulation and the Physics of Nonlinear Oscillations and Waves 27
2. Modulation of Light Waves and Information Encoding in Digital Optical Computers. Optical Triggers 29
4. Generation and Transformation of Femtosecond Light Pulses 36
5. Control of Transverse Interactions in Nonlinear Optical Resonators: Generation, Hysteresis, and Interaction of Nonlinear Structures 38
6. Conclusion. Nonlinear Optics and Molecular Electronics 40
References 43
CHAPTER 2

Optical Design Kit of Nonlinear Spatial Dynamics –
E.V. Degtiarev and M.A. Vorontsov ... 45
 1 Elementary Optical Synergetic Blocks 46
 1.1 Characteristics of a Synergetic Block 46
 1.2 Optical Synergetic Block Based on LCLV 47
 1.3 Main Mathematical Models ... 50
 1.4 Optical Multistability and Switching Waves 52
 2 Integral Transverse Interactions 54
 2.1 The Synergetic Optical Block with an Electronic Feedback Circuit .. 54
 3 Optical Counterparts of Two-Component Reaction-Diffusion Systems .. 56
 3.1 Linear Stability Analysis and Bifurcation of Uniform States 60
 4 Conclusion ... 64
References ... 66

CHAPTER 3

Pattern Formation in Passive Nonlinear Optical Systems –
W.J. Firth ... 69
 1 Induced and Spontaneous Patterns 71
 1.1 Materials and Geometries .. 72
 2 Mirror Feedback Systems ... 73
 2.1 Kerr Slice with Feedback Mirror 74
 2.2 Basic Model and Stability Analysis 75
 2.3 Liquid Crystal Light Valve Systems 81
 3 Pattern Formation in Optical Cavities 82
 3.1 Vector Kerr Model and Equations 83
 3.2 Spatial Stability of Symmetric Solutions 84
 3.3 Pattern Formation in a Two-Level Optical Cavity 89
 4 Conclusion ... 93
References ... 94

CHAPTER 4

 1 Linear Stability Analysis of Stationary Solutions 100
 2 Feedback Mirror Experiment ... 104
 2.1 Experimental Results .. 104
 2.2 Linear Analysis .. 105
 2.3 Static and Dynamical Thresholds 107
 2.4 Role of the Longitudinal Grating 109
Contents

2.5 Discussion of the Phase Conjugation Effects 109
2.6 Role of the Homogeneous Dephasing Time 112
2.7 Role of the Time Delay ... 114
3 The Ségard and Macke Experiment 114
3.1 Experiment ... 114
3.2 Linear Analysis ... 115
3.3 Physics of the Coupling .. 116
3.4 No Rabi Gain at Threshold 117
4 Rayleigh Self-Oscillation in an Intrinsic System 118
4.1 Characteristics of the Self-Oscillation in the No-Pump Depletion Model ... 119
4.2 Threshold Characteristics for Depleted Pump Fields 123
4.3 Doppler Effect .. 125
5 Conclusion ... 126
References ... 128

CHAPTER 5

Transverse Traveling-Wave Patterns and Instabilities in Lasers — Q. Feng, R. Indik, J. Lega, J.V. Moloney, A.C. Newell, and M. Staley ... 133
1 Basic Equations and Transverse Traveling-Wave Solution 134
2 Instabilities: Direct Stability Analysis and Phase Equations 137
3 Pattern Transition and Selection 143
4 Conclusion ... 144
References ... 145

CHAPTER 6

Laser-Based Optical Associative Memories — M. Brambilla, L.A. Lugiato, M.V. Pinna, F. Pratti, P. Pagani, and P. Vanotti ... 147
1 Nonlinear Dynamic Equations and Steady-State Equations 149
2 Single- and Multimode Stationary Solutions.
 Spatial Multistability ... 152
3 Operation with Injected Signal 154
4 General Description of the System 155
References ... 158

CHAPTER 7

1 Pattern Formation and Complexity 163
1.1 The Multimode Optical Oscillator: 1-, 2-, 3-Dimensional Optics ... 163
1.2 The Photorefractive Ring Oscillator. How to Control the Fresnel Number .. 167
1.3 Periodic (PA) and Chaotic (CA) Alternation and Space-Time Chaos .. 170
2 Phase Singularities, Topological Defects, and Turbulence 174
2.1 Phase Singularities in Linear Waves. Speckle Experiments 174
2.2 Phase Singularities in Nonlinear Optics: Scaling Laws 178
2.3 Comparison of Vortex Statistics in Speckle and Photorefractive Patterns .. 185
2.4 Transition from Boundary- to Bulk-Controlled Regimes 190
3 Theory of Pattern Formation and Pattern Competition 197
3.1 Equations of Photorefractive Oscillator 197
3.2 Truncation to a Small Number of Modes: Numerical Evidence of PA, CA, and STC 203
3.3 Symmetry Breaking at the Onset of Pattern Competition 208
References .. 212

CHAPTER 8

From the Hamiltonian Mechanics to a Continuous Media. Dissipative Structures. Criteria of Self-Organization —
Yu. L. Klimontovich ... 217
1 The Transition from Reversible Equations of Mechanics to Irreversible Equations of the Statistical Theory 218
1.1 Physical Definition of Continuous Medium 218
1.2 The Gibbs Ensemble for Nonequilibrium Processes 220
1.3 The Unified Definition of “Continuous Medium” Averaging over Physically Infinitesimal Volume 220
1.4 The Constructive Role of the Dynamic Instability of the Motion of Atoms ... 221
2 The Unified Description of Kinetic and Hydrodynamic Motion ... 222
2.1 The Generalized Kinetic Equation 222
3 The Equation of Entropy Balance. The Heat Flow 224
4 Equations of Hydrodynamics with Self-Diffusion 225
5 Effect of Self-Diffusion on the Spectra of Hydrodynamic Fluctuations .. 227
7 Kinetic and Hydrodynamic Description of the Heat Transfer in Active Medium 230
8 Kinetic Equation for Active Medium of Bistable Elements 231
9 Kinetic Fluctuations in Active Media 233
9.1 The Langevin Source in the Kinetic Equation 233
9.2 Spatial Diffusion. "Tails" in the Time Correlations 233
9.3 The Langevin Source in the Reaction Diffusion (FKPP) Equation .. 234
10 Natural Flicker Noise ("1/f Noise") ... 235
10.1 Natural Flicker Noise for Diffusion Processes 235
10.2 Natural Flicker Noise for Reaction-Diffusion Processes 237
11 Criteria of Self-Organization ... 238
11.1 Evolution in the Space of Controlling Parameters.

S-Theorem .. 238
11.2 The Comparison of the Relative Degree of Order of States on
the Basis of the S-Theorem Using Experimental Data 240
12 Conclusion. Associative Memory and Pattern Recognition 241
References .. 242
Index .. 245