Stochastic Dynamic Programming and the Control of Queueing Systems

LINN I. SENNOTT
Illinois State University
Contents

Preface xi

1 Introduction 1

1.1 Examples, 2
1.2 Aspects of Control, 8
1.3 Goals and Summary of Chapters, 12
 Bibliographic Notes, 13
 Problems, 14

2 Optimization Criteria 15

2.1 Basic Notation, 15
2.2 Policies, 20
2.3 Conditional Cost Distributions, 22
2.4 Optimization Criteria, 24
2.5 Approximating Sequence Method, 27
 Bibliographic Notes, 33
 Problems, 33

3 Finite Horizon Optimization 35

3.1 Finite Horizon Optimality Equation, 35
3.2 ASM for the Finite Horizon, 41
3.3 When Does FH(α, n) Hold?, 45
3.4 A Queueing Example, 51
 Bibliographic Notes, 58
 Problems, 58
CONTENTS

4 Infinite Horizon Discounted Cost Optimization 60
- 4.1 Infinite Horizon Discounted Cost Optimality Equation, 60
- 4.2 Solutions to the Optimality Equation, 65
- 4.3 Convergence of Finite Horizon Value Functions, 66
- 4.4 Characterization of Optimal Policies, 67
- 4.5 Analytic Properties of the Value Function, 70
- 4.6 ASM for the Infinite Horizon Discounted Case, 73
- 4.7 When Does DC(α) Hold?, 77

Bibliographic Notes, 81

Problems, 81

5 An Inventory Model 83
- 5.1 Formulation of the MDC, 83
- 5.2 Optimality Equations, 87
- 5.3 An Approximating Sequence, 88
- 5.4 Numerical Results, 90

Bibliographic Notes, 95

Problems, 95

6 Average Cost Optimization for Finite State Spaces 97
- 6.1 A Fundamental Relationship for S Countable, 97
- 6.2 An Optimal Stationary Policy Exists, 98
- 6.3 An Average Cost Optimality Equation, 101
- 6.4 ACOE for Constant Minimum Average Cost, 107
- 6.5 Solutions to the ACOE, 111
- 6.6 Method of Calculation, 115
- 6.7 An Example, 122

Bibliographic Notes, 123

Problems, 125

7 Average Cost Optimization Theory for Countable State Spaces 127
- 7.1 Counterexamples, 128
- 7.2 The (SEN) Assumptions, 132
- 7.3 An Example, 138
- 7.4 Average Cost Optimality Inequality, 139
- 7.5 Sufficient Conditions for the (SEN) Assumptions, 143
CONTENTS

7.6 Examples, 149
7.7 Weakening the (SEN) Assumptions, 157
Bibliographie Notes, 162
Problems, 165

8 Computation of Average Cost Optimal Policies for Infinite State Spaces

8.1 The (AC) Assumptions, 169
8.2 Verification of the Assumptions, 171
8.3 Examples, 176
*8.4 Another Example, 179
8.5 Service Rate Control Queue, 181
8.6 Routing to Parallel Queues, 186
8.7 Weakening the (AC) Assumptions, 193
Bibliographie Notes, 194
Problems, 196

9 Optimization Under Actions at Selected Epochs

9.1 Single- and Multiple-Sample Models, 199
9.2 Properties of an MS Distribution, 202
9.3 Service Control of the Single-Server Queue, 207
9.4 Arrival Control of the Single-Server Queue, 211
9.5 Average Cost Optimization of Example 9.3.1, 214
9.6 Average Cost Optimization of Example 9.3.2, 221
9.7 Computation Under Deterministic Service Times, 227
9.8 Computation Under Geometric Service Times, 229
Bibliographie Notes, 232
Problems, 233

10 Average Cost Optimization of Continuous Time Processes

10.1 Exponential Distributions and the Poisson Process, 238
10.2 Continuous Time Markov Decision Chains, 241
10.3 Average Cost Optimization of a CTMDC, 243
10.4 Service Rate Control of the M/M/1 Queue, 248
10.5 M/M/K Queue with Dynamic Service Pool, 251
10.6 Control of a Polling System, 258
Bibliographie Notes, 265
Problems, 266
Appendix A Results from Analysis
A.1 Useful Theorems, 270
A.2 Fatou's Lemma and the Dominated Convergence Theorem, 275
A.3 Power Series, 279
A.4 A Tauberian Theorem, 280
A.5 An Example, 286
Bibliographic Notes, 287

Appendix B Sequences of Stationary Policies
Bibliographic Notes, 291

Appendix C Markov Chains
C.1 Basic Theory, 292
C.2 Markov Chains with Costs, 298
C.3 Markov Chains with Finite State Space, 302
C.4 Approximating Sequences for Markov Chains, 302
C.5 Sufficient Conditions for Conformity, 308
Bibliographic Notes, 314

Bibliography
316

Index
325