CONTENTS

Preface xi

1. INTRODUCTION TO SURFACTANTS 1
 Surfactants Adsorb at Interfaces 1
 Surfactants Aggregate in Solution 3
 Surfactants are Amphiphilic 3
 Surface Active Compounds are Plentiful in Nature 5
 Surfactant Raw Materials may be Based on Petrochemicals or Oleochemicals 6
 Surfactants are Classified by the Polar Head Group 8
 The Ecological Impact of Surfactants is of Growing Importance 23
 Some Important Development Trends 26
 Bibliography 31

2. ASSOCIATION OF SURFACTANTS 33
 Different Amphiphile Systems 33
 Surfactants Start to Form Micelles at the CMC 33
 CMC Depends on Chemical Structure 37
 Temperature and Cosolutes Affect CMC 40
 The Solubility of Surfactants may be Strongly Temperature Dependent 44
 Driving Forces of Micelle Formation and Thermodynamic Models 46
 The Association Process and Counterion Binding can be Monitored by NMR 49
 Hydrophobic Compounds can be Solubilized in Micelles 51
 Micelle Size and Structure may Vary 52
 A Geometric Consideration of Chain Packing is Useful 54
 Kinetics of Micelle Formation 55
 Surfactants may Form Aggregates in other Solvents than Water 56
 General Comments on Amphiphile Self-Assembly 58
 Bibliography 60

3. PHASE BEHAVIOUR OF CONCENTRATED SURFACTANT SYSTEMS 61
 Micelle Type and Size Vary with Concentration 61
10. SURFACE ACTIVE POLYMERS
Surface Active Polymers can be Designed in Different Ways 201
Polymers may have a Hydrophilic Backbone and Hydrophobic Side Chains 202
Polymers may have a Hydrophobic Backbone and Hydrophilic Side Chains 205
Polymers may Consist of Alternating Hydrophilic and Hydrophobic Blocks 213
Polymeric Surfactants have Attractive Properties 217
Bibliography 217

11. SURFACTANT–POLYMER SYSTEMS
Polymers can Induce Surfactant Aggregation 219
Attractive Polymer–Surfactant Interactions Depend on both Polymer and Surfactant 223
Surfactant Association to Surface Active Polymers can be Strong 225
The Interaction between a Surfactant and a Surface Active Polymer is Analogous to Mixed Micelle Formation 227
Phase Behaviour of Polymer–Surfactant Mixtures Resembles that of Mixed Polymer Solutions 230
Phase Behaviour of Polymer–Surfactant Mixtures in Relation to Polymer–Polymer and Surfactant–Surfactant Mixtures 240
Polymers may Change the Phase Behaviour of Infinite Surfactant Self-Assemblies 241
There are many Technical Applications of Polymer–Surfactant Mixtures 242
Bibliography 244

12. SURFACE TENSION AND ADSORPTION AT THE AIR–WATER INTERFACE
Surface Tension is due to Asymmetric Cohesive Forces at a Surface 247
Solute Affect Surface Tension 249
Dynamic Surface Tension is Important 250
The Surface Tension is Related to Adsorption 250
Surfactant Adsorption at the Liquid–Air Surface is Related to the Critical Packing Parameter 253
Polymer Adsorption can be Misinterpreted 255
Measurement of Surface Tension 256
The Surface and Interfacial Tensions can be Understood in Terms of Molecular Interactions 258
Surface Tension and Adsorption can be Understood in Terms of the Regular Solution Theory 261
Bibliography 264
CONTENTS

13. ADSORPTION OF SURFACTANTS AT SOLID SURFACES
 Surfactants Adsorption is Governed both by the Nature of the Surfactant and the Surface 265
 Model Surfaces and Methods to Determine Adsorption 267
 Analysis of Surfactant Adsorption is Frequently Carried Out in Terms of the Langmuir Equation 269
 Surfactants Adsorb on Hydrophobic Surfaces 272
 Surfactants Adsorb on Hydrophilic Surfaces 279
 Competitive Adsorption is a Common Phenomenon 286
 Bibliography 294

14. INTERACTION OF POLYMERS WITH SURFACES
 The Adsorbed Amount Depends on Polymer Molecular Weight 296
 The Solvent has a Profound Influence on the Adsorption 299
 Electrostatic Interactions Affect the Adsorption 301
 Polyelectrolyte Adsorption can be Modelled Theoretically 306
 Polyelectrolytes Change the Double-Layer Repulsion 308
 Polymer Adsorption is Practically Irreversible 317
 The Acid–Base Concept can be Applied to Polymer Adsorption 318
 Measurement of Polymer Adsorption 321
 Bibliography 324

15. FOAMING OF SURFACTANT SOLUTIONS
 There are Transient Foams and Stable Foams 325
 Two Conditions must be Fulfilled for a Foam to be Formed 326
 There are Four Forces Acting on a Foam 328
 The Critical Packing Parameter Concept is a Useful Tool 330
 Particles and Proteins can Stabilize Foams 333
 Various Additives are Used to Break Foams 334
 Bibliography 336

16. POLYMERIZABLE SURFACTANTS
 The Surfactant Effect is Sometimes Undesirable 337
 The Surfactant may Polymerize in Different Ways 338
 Polymerizable Surfactants are of Interest for a Variety of Applications 341
 Bibliography 349

17. USE OF SURFACTANTS AS EMULSIFIERS
 Emulsions need to be Stabilized 351
 The HLB Concept 352
 The HLB Method of Selecting Emulsifier is Crude but Simple 353
 The PIT Concept 356
 The PIT Method of Selecting Emulsifier is often Useful 357
Different Types of Non-ionic Surfactants can be used as Emulsifiers 358
Bancroft’s Rule may be Explained by Adsorption Dynamics of the Surfactant 360
Bancroft’s Rule may be Related to the Surfactant Geometry 361
Hydrodynamics may Control what Type of Emulsion will Form 362
Bibliography 363

18. MICROEMULSIONS 365
The Term Microemulsion is Misleading 365
Phase Behaviour of Oil–Water–Surfactant Systems can be Illustrated by Phase Diagrams 365
The Choice of Surfactant is Decisive 370
Ternary Phase Diagrams can be Complex 372
How to Approach Microstructure? 372
Molecular Self-Diffusion can be Measured 373
Confinement, Obstruction and Solvation Determine Solvent Self-Diffusion in Microemulsions 374
Self-Diffusion Gives Evidence for a Bicontinuous Structure at Balanced Conditions 377
The Microstructure is Governed by Surfactant Properties 378
Bibliography 380

19. MICROEMULSIONS FOR OIL AND SOIL REMOVAL 391
Microemulsions can be the Solution to Enhanced Oil Recovery 391
Surfactant-Based Cleaning Formulations may act by in situ Formation of Microemulsion (Detergency) 396
Microemulsion-Based Cleaning Formulations are Efficient 397
Bibliography 399

20. CHEMICAL REACTIONS IN MICROEMULSIONS 401
Microemulsions can be Regarded as Minireactors for Chemical Reactions 401
Surface Active Reagents may be Subject to Micellar Catalysis 402
Microemulsions are Good Solvents for Organic Synthesis 405
Microemulsions are Useful as Media for Enzymatic Reactions 409
Microemulsions can be Used to Prepare Nanosized Lattices 414
Nanosized Inorganic Particles can be Prepared in Microemulsions 419
Bibliography 422

Appendixes 425
Index 433