THE PHILIPS STIRLING THERMAL ENGINE*)

ANALYSIS OF THE RHOMBIC DRIVE MECHANISM
AND
EFFICIENCY MEASUREMENTS

BY
R. J. MEIJER

CONTENTS

I. General introduction

I.1. A short history of the hot-gas engine ... 3
I.2. The principle of the Stirling engine .. 7
I.3. Drive mechanisms used in displacer-piston engines 12
References .. 16

II. Analysis of the rhombic drive mechanism ... 17

II.1. Symbols ... 17
II.1.1. Symbols for the general form .. 17
II.1.2. Symbols for the special form 18
II.2. Balancing .. 26
II.2.1. Introduction .. 26
II.2.2. The balancing conditions for the general form 27
II.2.3. The balancing conditions for the special form 32
II.3. The determination of various quantities from the dimensions of the drive mechanism ... 35
II.3.1. Introduction .. 35
II.3.2. S, \(\varphi_T \) and \(\chi_{\text{max}} \) ... 36
II.3.3. The volume of the expansion space, \(V_E \) 38
II.3.4. The volume of the compression space, \(V_C \) 39
II.3.5. \(V_0 \), \(w \), \(\varphi_{\text{ve}} \) and \(\alpha \) ... 42
II.3.6. Summary of the equations derived above 42
II.4. The pressure variation in circuit and buffer space 44
II.4.1. The pressure variation in the circuit 44
II.4.2. The pressure variation in the buffer space of a multi-cylinder engine ... 45
II.5. The torque on the crankshafts due to the gas forces and inertia forces 46
II.5.1. Introduction .. 46
II.5.2. The energy balance .. 47
II.5.3. The torque on one crankshaft due to the gas forces of the circuit and crankcase on the piston and the displacer 48
II.5.4. The torque on one crankshaft due to the gas forces of the buffer space acting on the first piston of a multi-cylinder engine 50
II.5.5. The torque on one crankshaft due to the inertia forces 50
II.6. The forces on various parts of the drive mechanism due to gas forces and inertia forces ... 54
II.6.1. Introduction .. 54
II.6.2. The forces on the piston drive mechanism 54
II.6.3. The forces on the displacer drive mechanism 57
II.6.4. The forces on the crankshaft ... 57
II.6.5. Simplified equations for the forces 58
II.7. The power and the torque due to the friction on one crankshaft 59
II.8. Some applications of the torques calculated above 62
II.8.1. Introduction .. 62
II.8.2. Motion of the crankshafts ... 62
II.8.3. The torque on the gearwheels ... 66
II.8.4. Determination of the size of the flywheels 67
II.8.5. Motion of the driven machine ... 68
II.8.6. The reaction force and reaction torque on the base 69
II.9. Specimen calculation for a single-cylinder hot-gas engine

II.9.1. Nominal data and the determination of numerical quantities
II.9.2. The torque \((T_t + T_f) \) for \(\omega = \) constant
II.9.3. The effective moment of inertia \(J_e \)
II.9.4. Calculation of the forces occurring in the system
II.9.5. An estimate of the torque \(T_f \) and the friction power \(P_f \)
II.9.6. Motion of the crankshaft
II.9.7. Motion of the driven machine (brake)
II.9.8. The torque on the gearwheels
II.9.9. The reaction torque on the base

References

III. Efficiency measurements on a single-cylinder hot-gas engine with rhombic drive mechanism

III.1. Principal engine data
III.2. Constructional details
III.3. The measuring set-up
III.4. Results

Conclusions

References

Appendix I. List of equations

Appendix II. The coefficients \(B_n \)

Appendix III. The coefficients \(G_n \)

Appendix IV. The coefficients \(H_n \)