Organic Chemistry

Joseph M. Hornback

University of Denver

Brooks/Cole Publishing Company

I(™)P® An International Thomson Publishing Company

Pacific Grove • Albany • Belmont • Bonn • Boston • Cincinnati • Detroit •
Johannesburg • London • Madrid • Melbourne • Mexico City • New York •
Paris • Singapore • Tokyo • Toronto • Washington
Brief Contents

1 A Simple Model for Chemical Bonds 1
2 Organic Compounds: A First Look 29
3 Orbitals and Bonding 59
4 Proton Transfer: A Simple Reaction 105
5 Functional Groups and Nomenclature I 147
6 Stereochemistry 183
7 Nucleophilic Substitution Reactions 257
8 Elimination Reactions 309
9 Synthetic Uses of Substitution and Elimination Reactions 345
10 Additions to Carbon–Carbon Double and Triple Bonds 401
11 Functional Groups and Nomenclature II 461
12 Structure Determination by Spectroscopy I: Infrared and Nuclear Magnetic Resonance Spectroscopy 497
Brief Contents

13 Structure Determination by Spectroscopy II: Ultraviolet-Visible Spectroscopy and Mass Spectrometry 601

14 Additions to the Carbonyl Group 635

15 Substitutions at the Carbonyl Group 693

16 Enolate and Other Carbon Nucleophiles 751

17 Benzene and Aromatic Compounds 807

18 Aromatic Substitution Reactions 837

19 The Chemistry of Radicals 903

20 Pericyclic Reactions 943

21 The Synthesis of Organic Compounds 1001

22 Industrial Organic Chemistry 1041

23 Synthetic Polymers 1069

24 Carbohydrates 1103

25 Amino Acids, Peptides, and Proteins 1145

26 Nucleotides and Nucleic Acids 1187

27 Other Natural Products 1219
Contents

2.6 Physical Properties and Molecular Structure 44
2.7 Melting Points, Boiling Points, and Solubilities 46
 Elaboration: Melting Point of Cubane 47
 Elaboration: Boiling Points of Fuels 48
 Elaboration: A Chemical Handwarmer 49
2.8 Introduction to Functional Groups 50
2.9 Summary 53

End-of-Chapter Problems 53

3 Orbital and Bonding

3.1 Introduction 59
3.2 Atomic Orbitals 59
 Elaboration: Quantum Numbers 60
3.3 Molecular Orbitals 64
3.4 Single Bonds and sp^3 Hybridization 67
3.5 Double Bonds and sp^2 Hybridization 70
3.6 Triple Bonds and sp Hybridization 74
3.7 Resonance and MO Theory 77
3.8 Rules for Resonance Structures 80
3.9 Types of Resonance Interactions 84
 Elaboration: Resonance Stabilization of the Allyl Radical 88
 Elaboration: Resonance and the Bond Lengths of Naphthalene 92
3.10 Molecular Orbital Energies 94
 Elaboration: Reaction of Formaldehyde with Sodium 96
3.11 Summary 97

End-of-Chapter Problems 99

4 Proton Transfer: A Simple Reaction

4.1 Introduction 105
4.2 Definitions 105
4.3 The Acid–Base Equilibrium 109
 Elaboration: Base Dissociation Constants 111
4.4 Rate of the Acid–Base Reaction 115
4.5 Effect of the Atom Bonded to the Hydrogen on Acidity 117
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6</td>
<td>Inductive Effects</td>
<td>119</td>
</tr>
<tr>
<td>4.7</td>
<td>Hydrogen Bonding</td>
<td>122</td>
</tr>
<tr>
<td>4.8</td>
<td>Hybridization</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Calcium Carbide</td>
<td>124</td>
</tr>
<tr>
<td>4.9</td>
<td>Resonance</td>
<td>125</td>
</tr>
<tr>
<td>4.10</td>
<td>Tables of Acids and Bases</td>
<td>131</td>
</tr>
<tr>
<td>4.11</td>
<td>Substitution Reactions</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Acidic and Basic Functional Groups</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Elaboration: The Acidity of Solvents</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Superacids</td>
<td>139</td>
</tr>
<tr>
<td>4.12</td>
<td>Summary</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>End-of-Chapter Problems</td>
<td>141</td>
</tr>
</tbody>
</table>

5 Functional Groups and Nomenclature I

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>147</td>
</tr>
<tr>
<td>5.2</td>
<td>Alkanes</td>
<td>147</td>
</tr>
<tr>
<td>5.3</td>
<td>Common Nomenclature of Alkanes</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Energy Content of Fuels</td>
<td>151</td>
</tr>
<tr>
<td>5.4</td>
<td>Systematic Nomenclature of Alkanes</td>
<td>153</td>
</tr>
<tr>
<td>5.5</td>
<td>Systematic Nomenclature of Cycloalkanes</td>
<td>161</td>
</tr>
<tr>
<td>5.6</td>
<td>Alkenes</td>
<td>162</td>
</tr>
<tr>
<td>5.7</td>
<td>Alkynes</td>
<td>165</td>
</tr>
<tr>
<td>5.8</td>
<td>Alkyl Halides</td>
<td>166</td>
</tr>
<tr>
<td>5.9</td>
<td>Alcohols</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Chlorinated Organic Compounds and the Environment</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Chlorofluorocarbons and the Ozone Hole</td>
<td>171</td>
</tr>
<tr>
<td>5.10</td>
<td>Ethers</td>
<td>173</td>
</tr>
<tr>
<td>5.11</td>
<td>Amines</td>
<td>175</td>
</tr>
<tr>
<td>5.12</td>
<td>Summary</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>End-of-Chapter Problems</td>
<td>178</td>
</tr>
</tbody>
</table>

6 Stereochemistry

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>183</td>
</tr>
<tr>
<td>6.2</td>
<td>Geometrical Isomers</td>
<td>184</td>
</tr>
<tr>
<td>6.3</td>
<td>Designating the Configuration of Geometrical Isomers</td>
<td>188</td>
</tr>
<tr>
<td>6.4</td>
<td>Conformations</td>
<td>192</td>
</tr>
</tbody>
</table>
6.5 Conformations of Cyclic Molecules 199
6.6 Conformations of Cyclohexane 203
6.7 Conformations of Other Rings 208
6.8 Conformations of Cyclohexanes with One Substituent 208
 Elaboration: How Much Strain Is Too Much? 209
6.9 Conformations of Cyclohexanes with Two or More Substituents 214
6.10 Chiral Molecules 219
6.11 Recognizing Chiral Molecules 221
6.12 Designating Configuration of Enantiomers 223
6.13 Properties of Enantiomers 227
 Elaboration: The D, L Method for Designating Absolute Configuration 230
6.14 Molecules with Multiple Chiral Centers 232
6.15 Stereoisomers and Cyclic Compounds 236
6.16 Resolution: Separating Enantiomers 238
6.17 Fischer Projections 239
 Elaboration: History of the Development of an Understanding of Stereochemistry 242
6.18 Reactions That Produce Enantiomers 244
 Elaboration: Thalidomide and Chiral Synthesis 245
 Elaboration: Other Chiral Compounds 246
6.19 Summary 249
End-of-Chapter Problems 250

Nucleophilic Substitution Reactions 257

7.1 Introduction 257
7.2 The General Reaction 258
7.3 Reaction Mechanisms 258
7.4 Bimolecular Nucleophilic Substitution 259
7.5 Stereochemistry of the S_N2 Reaction 260
7.6 Effect of Substitutents on the Rate of the S_N2 Reaction 263
7.7 Unimolecular Nucleophilic Substitution 267
7.8 Stereochemistry of the S_N1 Reaction 271
7.9 Effects of Substituents on the Rate of the S_N1 Reaction 274
 Elaboration: The Triphenylmethyl Carbocation 276
7.10 Leaving Groups 277
 Elaboration: Experimental Evidence for Inversion of Configuration in S_N2 Reactions 281
7.11 Nucleophiles 282
7.12 Effect of Solvent 285
7.13 Competition Between S_{N1} and S_{N2} Reactions 288
 Elaboration: Chemical Tests Involving S_{N1} and S_{N2} Reactions 291
7.14 Intramolecular Reactions 292
7.15 Competing Reactions 293
 Elaboration: Carbocation Rearrangements in Superacids 297
7.16 Summary 299
End-of-Chapter Problems 300

8 Elimination Reactions 309
8.1 Introduction 309
8.2 The General Reaction 309
8.3 Bimolecular Elimination 310
 Elaboration: Investigating Mechanisms I: Kinetic Isotope Effects 311
 Elaboration: DDT-Resistant Insects 312
8.4 Stereochemistry of the E2 Reaction 313
8.5 Direction of Elimination 318
 Elaboration: Syn Eliminations 319
8.6 Unimolecular Elimination 326
 Elaboration: Investigating Mechanisms II: The Competition Between the S_{N1} and E1 Pathways 328
8.7 Regiochemistry and Stereochemistry of the E1 Reaction 329
 Elaboration: The E1cb Mechanism 330
8.8 The Competition Between Elimination and Substitution 332
 Elaboration: Biological Elimination Reactions 337
8.9 Summary 338
End-of-Chapter Problems 339

9 Synthetic Uses of Substitution and Elimination Reactions 345
9.1 Introduction 345
9.2 Substitution Reactions 345
Contents

9.3 Preparation of Alcohols 346
9.4 Preparation of Ethers 349

Elaboration: Poisonous Alkylating Agents 354
9.5 Preparation of Esters 356
9.6 Preparation of Alkyl Halides 357
9.7 Preparation of Amines 361

Elaboration: Biological Methylations 365
9.8 Preparation of Hydrocarbons 366
9.9 Formation of Carbon–Carbon Bonds 367
9.10 Phosphorus and Sulfur Nucleophiles 369
9.11 Ring Opening of Epoxides 370

Elaboration: Sulfur Nucleophiles in Biochemistry 370
9.12 Elimination Reactions 373

Elaboration: Uses of Epoxides in Industry 374
9.13 Elimination of Hydrogen Halides
(Dehydrohalogenation) 375
9.14 Preparation of Alkynes 376
9.15 Dehydration 377
9.16 Eliminations to Form Carbon–Oxygen Double Bonds;
Oxidation Reactions 380

Elaboration: Environmentally Friendly Chemistry
(Green Chemistry) 384

Elaboration: Cancer Chemotherapy 388
9.18 Summary 389

End-of-Chapter Problems 394

10 Additions to Carbon–Carbon Double and
Triple Bonds 401

10.1 Introduction 401
10.2 The General Mechanism 402
10.3 Addition of Hydrogen Halides 403
10.4 Addition of Halogens 409

Elaboration: Formation of Carbocations in Halogen
Additions 413
10.5 Halohydrin Formation 415
10.6 Addition of Water (Hydration) 417

Elaboration: Industrial Addition Reactions 419
10.7 Oxymercuration-Reduction 420
10.8 Hydroboration-Oxidation 424

 Elaboration: Chiral Boranes in Organic Synthesis 430

10.9 Addition of Carbenes 433

 Elaboration: Singlet and Triplet Carbenes 436

10.10 Epoxidation 437

10.11 Hydroxylation 439

10.12 Ozonolysis 440

10.13 Catalytic Hydrogenation 443

10.14 Additions to Conjugated Dienes 446

 Elaboration: Asymmetric Hydrogenation 447

10.15 Summary 449

End-of-Chapter Problems 454

11 Functional Groups and Nomenclature II 461

11.1 Introduction 461

11.2 Aromatic Hydrocarbons 461

 Elaboration: Structure Proof by the Number of Isomers 465

11.3 Phenols 466

11.4 Aldehydes and Ketones 469

11.5 Carboxylic Acids 473

11.6 Derivatives of Carboxylic Acids 475

 Elaboration: Fragrant Organic Compounds 483

11.7 Sulfur and Phosphorus Compounds 485

11.8 Nomenclature of Compounds with Several Functional Groups 488

 Elaboration: Medicinal Uses of DMSO 488

11.9 Summary 491

End-of-Chapter Problems 492

12 Structure Determination by Spectroscopy I: Infrared and Nuclear Magnetic Resonance Spectroscopy 497

12.1 Introduction 497

12.2 Electromagnetic Radiation 498

12.3 Interaction of Electromagnetic Radiation with Molecules 499

12.4 The Electromagnetic Spectrum 501
12. Infrared Spectroscopy
- **12.5 Infrared Spectroscopy** 503
- **12.6 Generalizations** 505
- **12.7 The Hydrogen Region** 506
- **12.8 The Triple Bond Region** 514

Elaboration: Remote Sensing of Automobile Pollutants 516

- **12.9 The Double-Bond Region** 518
- **12.10 The Fingerprint Region** 520
- **12.11 Interpretation of IR Spectra** 522

Elaboration: The Greenhouse Effect 537

- **12.12 Nuclear Magnetic Resonance Spectroscopy** 538
- **12.13 Theory of 1H-NMR** 540
- **12.14 The Chemical Shift** 541
- **12.15 Spin Coupling** 551
- **12.16 Complex Coupling** 556
- **12.17 Chemical Exchange** 557
- **12.18 Deuterium** 558

Elaboration: NMR Spectroscopy of Carbocations in Superacid 558

- **12.19 Interpretation of 1H-NMR Spectra** 560

Elaboration: Magnetic Resonance Imaging 566

- **12.20 Carbon-13 Magnetic Resonance Spectroscopy** 567
- **12.21 Solved Problems Employing IR and NMR Spectra** 575

Elaboration: Use of NMR to Study Reactions 586

- **12.22 Summary** 587

End-of-Chapter Problems 588

- **13.1 Introduction** 601
- **13.2 Ultraviolet-Visible Spectroscopy** 601
- **13.3 Types of Electronic Transitions** 604
- **13.4 UV-Visible Spectroscopy in Structure Determination** 607
- **13.5 Mass Spectrometry** 608

Elaboration: Ozone and Ultraviolet Radiation 609

- **13.6 Determining the Molecular Formula** 610
- **13.7 Fragmentation of the Molecular Ion** 616
Contents xvii

13.8 Summary 626
Elaboration: Gas Chromatography and Mass Spectrometry 626
End-of-Chapter Problems 627

14 Additions to the Carbonyl Group 635
14.1 Introduction 635
14.2 General Mechanisms 636
14.3 Addition of Hydride; Reduction of Aldehydes and Ketones 638
14.4 Addition of Water 640
14.5 Addition of Hydrogen Cyanide 644
14.6 Preparation and Properties of Organometallic Nucleophiles 646
14.7 Addition of Organometallic Nucleophiles 649
14.8 Addition of Phosphorus Ylides; The Wittig Reaction 653
Elaboration: Synthesis of Vitamin A 657
14.9 Addition of Nitrogen Nucleophiles 659
Elaboration: Removal of Water 661
Elaboration: Methamphetamine 667
14.10 Addition of Alcohols 667
Elaboration: Imines in Living Organisms 668
14.11 Conjugate Additions 674
14.12 Summary 678
End-of-Chapter Problems 682
Spectroscopy Problems 691

15 Substitutions at the Carbonyl Group 693
15.1 Introduction 693
15.2 The General Mechanism 693
15.3 Preparation of Acyl Chlorides 699
15.4 Preparation of Anhydrides 701
15.5 Preparation of Esters 702
15.6 Preparation of Carboxylic Acids 705
Elaboration: The Preparation of Soap 708
Elaboration: Establishing the Mechanism of Saponification 710
15.7 Preparation of Amides 715
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.8</td>
<td>Reaction with Hydride Nucleophiles</td>
<td>718</td>
<td></td>
</tr>
<tr>
<td>15.9</td>
<td>Reduction of Acid Derivatives to Aldehydes</td>
<td>722</td>
<td></td>
</tr>
<tr>
<td>15.10</td>
<td>Reactions with Organometallic Nucleophiles</td>
<td>724</td>
<td></td>
</tr>
<tr>
<td>15.11</td>
<td>Preparation of Ketones</td>
<td>726</td>
<td></td>
</tr>
<tr>
<td>15.12</td>
<td>Derivatives of Sulfur and Phosphorus Acids</td>
<td>728</td>
<td></td>
</tr>
<tr>
<td>15.13</td>
<td>Summary</td>
<td>734</td>
<td></td>
</tr>
<tr>
<td>15.14</td>
<td>Elaboration: Reaction Conditions</td>
<td>716</td>
<td></td>
</tr>
<tr>
<td>15.15</td>
<td>Elaboration: Nerve Gases and Pesticides</td>
<td>730</td>
<td></td>
</tr>
<tr>
<td>15.16</td>
<td>Elaboration: ATP as an Energy Carrier</td>
<td>732</td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>751</td>
<td></td>
</tr>
<tr>
<td>16.2</td>
<td>Enols and Enolate Anions</td>
<td>752</td>
<td></td>
</tr>
<tr>
<td>16.3</td>
<td>Alkylation of Enolate Anions</td>
<td>755</td>
<td></td>
</tr>
<tr>
<td>16.4</td>
<td>Alkylation of More Stabilized Anions</td>
<td>759</td>
<td></td>
</tr>
<tr>
<td>16.5</td>
<td>The Aldol Condensation</td>
<td>765</td>
<td></td>
</tr>
<tr>
<td>16.6</td>
<td>Ester Condensations</td>
<td>772</td>
<td></td>
</tr>
<tr>
<td>16.7</td>
<td>Enamines</td>
<td>779</td>
<td></td>
</tr>
<tr>
<td>16.8</td>
<td>Other Carbon Nucleophiles</td>
<td>780</td>
<td></td>
</tr>
<tr>
<td>16.9</td>
<td>Conjugate Additions</td>
<td>784</td>
<td></td>
</tr>
<tr>
<td>16.10</td>
<td>Synthesis</td>
<td>787</td>
<td></td>
</tr>
<tr>
<td>16.11</td>
<td>Summary</td>
<td>792</td>
<td></td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>807</td>
<td></td>
</tr>
<tr>
<td>17.2</td>
<td>Benzene</td>
<td>807</td>
<td></td>
</tr>
<tr>
<td>17.3</td>
<td>Resonance Energy of Benzene</td>
<td>809</td>
<td></td>
</tr>
<tr>
<td>17.4</td>
<td>Molecular Orbital Model for Cyclic Conjugated Molecules</td>
<td>811</td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>Cyclobutadiene</td>
<td>814</td>
<td></td>
</tr>
<tr>
<td>17.6</td>
<td>Hückel's Rule</td>
<td>816</td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>Elaboration: Isomerization of Sugars</td>
<td>756</td>
<td></td>
</tr>
<tr>
<td>16.12</td>
<td>Elaboration: The Reverse Aldol Reaction in Metabolism</td>
<td>772</td>
<td></td>
</tr>
<tr>
<td>16.13</td>
<td>Elaboration: An Industrial Aldol Reaction</td>
<td>774</td>
<td></td>
</tr>
<tr>
<td>17.1</td>
<td>Benzene and Aromatic Compounds</td>
<td>807</td>
<td></td>
</tr>
<tr>
<td>17.2</td>
<td>Introduction</td>
<td>807</td>
<td></td>
</tr>
<tr>
<td>17.3</td>
<td>Benzene</td>
<td>807</td>
<td></td>
</tr>
<tr>
<td>17.4</td>
<td>Resonance Energy of Benzene</td>
<td>809</td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>Molecular Orbital Model for Cyclic Conjugated Molecules</td>
<td>811</td>
<td></td>
</tr>
<tr>
<td>17.6</td>
<td>Cyclobutadiene</td>
<td>814</td>
<td></td>
</tr>
<tr>
<td>17.7</td>
<td>Hückel's Rule</td>
<td>816</td>
<td></td>
</tr>
</tbody>
</table>
19 The Chemistry of Radicals

19.1 Introduction 903
19.2 Radicals 903
19.3 Stability of Radicals 904
19.4 Geometry of Carbon Radicals 906
19.5 Generation of Radicals 907
19.6 General Radical Reactions 909

Elaboration: The Triphenylmethyl Radical 911

19.7 Kolbe Electrolysis 912
19.8 Halogenation 913
19.9 Dehalogenation 920
19.10 Autoxidation 921

Elaboration: The Industrial Preparation of Phenol 922

Elaboration: Vitamin E and Lipid Autoxidation 924

19.11 Radical Additions to Alkenes 926
19.12 Reductions and Radical Anions 929
19.13 Summary 934

End-of-Chapter Problems 936
Problems Involving Spectroscopy 941

20 Pericyclic Reactions

20.1 Introduction 943
20.2 Pericyclic Reactions 943
20.3 MO Theory for Conjugated Molecules 946
20.4 Electroyclic Reactions 951
20.5 Examples of Electroyclic Reactions 956

Elaboration: Dewar Benzene 957

20.6 Cycloaddition Reactions 961
20.7 The Diels-Alder Reaction 963

Elaboration: Diels-Alder Adducts as Pesticides 968

20.8 Other Cycloaddition Reactions 971
20.9 Sigmatropic Rearrangements 972
20.10 Examples of Sigmatropic Rearrangements 977
Elaboration: Degenerate Rearrangements 979
Elaboration: Suprafacial and Antarafacial Reactions 982
Elaboration: Pericyclic Reactions and Vitamin D 983
20.11 Rearrangements to Electron Deficient Centers 986
20.12 Summary 989
End-of-Chapter Problems 991
Problems Involving Spectroscopy 998

21 The Synthesis of Organic Compounds 1001
21.1 Introduction 1001
21.2 Protective Groups for Alcohols 1001
21.3 Protective Groups for Aldehydes and Ketones 1006
21.4 Protective Groups for Carboxylic Acids 1006
21.5 Protective Groups for Amines 1008
21.6 Retrosynthetic Analysis 1010
Elaboration: Pheromones 1014
21.7 Examples of Syntheses 1016
21.8 Reactions That Form Carbon–Carbon Bonds 1019
21.9 Preparation of Functional Groups 1020
21.10 Summary 1035
End-of-Chapter Problems 1035

22 Industrial Organic Chemistry 1041
22.1 Introduction 1041
22.2 The Organic Chemical Industry 1041
22.3 Important Industrial Organic Chemicals 1042
22.4 Sources of Organic Chemicals 1043
22.5 Chemicals from Ethylene 1046
Elaboration: Carbonylation Reactions 1048
22.6 Chemicals from Propylene 1050
Elaboration: The Metathesis Reaction 1052
22.7 Chemicals from Benzene and Other Aromatic Compounds 1053
Elaboration: Industrial Electrophilic Aromatic Substitution Reactions 1056
Elaboration: Dioctyl Phthalate Plasticizer 1060
22.8 Chemicals from Butylene 1061
22.9 Chemicals from Other Sources 1063
Contents

22.10 Summary 1064

End-of-Chapter Problems 1065
Problems Involving Spectroscopy 1068

23 Synthetic Polymers 1069

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1</td>
<td>Introduction</td>
<td>1069</td>
</tr>
<tr>
<td>23.2</td>
<td>Radical Chain Polymerization</td>
<td>1069</td>
</tr>
<tr>
<td>23.3</td>
<td>Structures of Polymers</td>
<td>1073</td>
</tr>
<tr>
<td>23.4</td>
<td>Ionic Polymerization</td>
<td>1076</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Super Glue</td>
<td>1076</td>
</tr>
<tr>
<td>23.5</td>
<td>Coordination Polymerization</td>
<td>1078</td>
</tr>
<tr>
<td>23.6</td>
<td>Physical Properties of Polymers</td>
<td>1079</td>
</tr>
<tr>
<td>23.7</td>
<td>Major Thermoplastic Addition Polymers</td>
<td>1081</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Teflon</td>
<td>1082</td>
</tr>
<tr>
<td>23.8</td>
<td>Elastomers</td>
<td>1084</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Charles Goodyear and Vulcanization</td>
<td>1085</td>
</tr>
<tr>
<td>23.9</td>
<td>Condensation Polymers</td>
<td>1087</td>
</tr>
<tr>
<td>23.10</td>
<td>Thermoset Polymers</td>
<td>1092</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Polybenzimidazole</td>
<td>1092</td>
</tr>
<tr>
<td>23.11</td>
<td>Chemical Properties of Polymers</td>
<td>1095</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Recycling Plastics</td>
<td>1097</td>
</tr>
<tr>
<td>23.12</td>
<td>Summary</td>
<td>1098</td>
</tr>
<tr>
<td></td>
<td>End-of-Chapter Problems</td>
<td>1099</td>
</tr>
</tbody>
</table>

24 Carbohydrates 1103

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1</td>
<td>Introduction</td>
<td>1103</td>
</tr>
<tr>
<td>24.2</td>
<td>Structures of Carbohydrates</td>
<td>1103</td>
</tr>
<tr>
<td>24.3</td>
<td>Stereochemistry of Carbohydrates</td>
<td>1104</td>
</tr>
<tr>
<td></td>
<td>Elaboration: R and S Nomenclature Applied to Sugars</td>
<td>1106</td>
</tr>
<tr>
<td>24.4</td>
<td>Cyclization of Monosaccharides</td>
<td>1108</td>
</tr>
<tr>
<td>24.5</td>
<td>Reactions of Monosaccharides</td>
<td>1113</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Determination of Anomer Configuration</td>
<td>1114</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Artificial Sweeteners</td>
<td>1117</td>
</tr>
<tr>
<td>24.6</td>
<td>Fischer’s Structure Proof for Glucose</td>
<td>1124</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Emil Fischer</td>
<td>1130</td>
</tr>
</tbody>
</table>
24.7 Disaccharides 1130
24.8 Polysaccharides 1132
24.9 Other Carbohydrate-Containing Compounds 1134
 Elaboration: Blood Groups 1136
24.10 Summary 1137
End-of-Chapter Problems 1138
Problems Involving Spectroscopy 1143

25 Amino Acids, Peptides, and Proteins 1145
25.1 Introduction 1145
25.2 Amino Acids 1145
25.3 Acid–Base Chemistry of Amino Acids 1148
25.4 Chemical Reactions of Amino Acids 1152
25.5 Laboratory Synthesis of Amino Acids 1153
 Elaboration: Asymmetric Synthesis of Amino Acids 1157
25.6 Peptides and Proteins 1159
 Elaboration: Biosynthesis of Amino Acids from α-Ketoacids 1160
 Elaboration: NMR Spectra of Amides 1164
25.7 Sequencing Peptides 1165
25.8 Laboratory Synthesis of Peptides 1170
 Elaboration: Frederick Sanger and the Sequence of Insulin 1171
25.9 Protein Structure 1180
25.10 Enzymes 1180
25.11 Summary 1182
End-of-Chapter Problems 1184

26 Nucleotides and Nucleic Acids 1187
26.1 Introduction 1187
26.2 Nucleosides and Nucleotides 1187
26.3 Structure of DNA and RNA 1190
 Elaboration: Tautomers of Guanine and Thymine 1193
26.4 Replication, Transcription, and Translation 1196
 Elaboration: Base-Catalyzed Hydrolysis of RNA 1196
 Elaboration: The Treatment of AIDS with AZT 1199
26.5 Sequencing DNA 1200
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.6</td>
<td>Laboratory Synthesis of DNA</td>
<td>1207</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Automated DNA Sequencing</td>
<td>1207</td>
</tr>
<tr>
<td></td>
<td>Elaboration: DNA Fingerprinting</td>
<td>1208</td>
</tr>
<tr>
<td>26.7</td>
<td>Summary</td>
<td>1212</td>
</tr>
<tr>
<td></td>
<td>End-of-Chapter Problems</td>
<td>1212</td>
</tr>
<tr>
<td>27</td>
<td>Other Natural Products</td>
<td>1219</td>
</tr>
<tr>
<td>27.1</td>
<td>Introduction</td>
<td>1219</td>
</tr>
<tr>
<td>27.2</td>
<td>Terpenes</td>
<td>1219</td>
</tr>
<tr>
<td>27.3</td>
<td>Monoterpenes</td>
<td>1221</td>
</tr>
<tr>
<td>27.4</td>
<td>Sesquiterpenes</td>
<td>1225</td>
</tr>
<tr>
<td>27.5</td>
<td>Larger Terpenes</td>
<td>1228</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Conformations of Decalin</td>
<td>1228</td>
</tr>
<tr>
<td>27.6</td>
<td>Steroids</td>
<td>1233</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Syntheses That Mimic Nature</td>
<td>1235</td>
</tr>
<tr>
<td>27.7</td>
<td>Synthesis of Steroids</td>
<td>1237</td>
</tr>
<tr>
<td></td>
<td>Elaboration: The Birth Control Pill</td>
<td>1239</td>
</tr>
<tr>
<td>27.8</td>
<td>Alkaloids</td>
<td>1241</td>
</tr>
<tr>
<td>27.9</td>
<td>Fats and Related Compounds</td>
<td>1243</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Partially Hydrogenated Vegetable Oil</td>
<td>1245</td>
</tr>
<tr>
<td>27.10</td>
<td>Prostaglandins</td>
<td>1246</td>
</tr>
<tr>
<td></td>
<td>Elaboration: Laboratory Synthesis of Prostaglandins</td>
<td>1248</td>
</tr>
<tr>
<td>27.11</td>
<td>Summary</td>
<td>1248</td>
</tr>
<tr>
<td></td>
<td>End-of-Chapter Problems</td>
<td>1249</td>
</tr>
<tr>
<td></td>
<td>Problems Involving Spectroscopy</td>
<td>1256</td>
</tr>
</tbody>
</table>

Appendix: Answers to Selected In-Chapter Problems A1

Glossary G1

Index I1