Phthalocyanine Materials
Synthesis, Structure and Function

Neil B. McKeown
University of Manchester
Contents

Preface xi
Symbols and abbreviations xiii
Summary of phthalocyanine nomenclature xvii

Chapter 1 An introduction to the phthalocyanines 1
1.1 Discovery and structural determination 1
1.2 The use of Pcs as industrial colorants 3
1.3 Metal phthalocyanines (MPcs) 3
1.4 A gift to molecular physics 7
1.5 A brief note on Pc nomenclature 9
1.6 The Pc literature 10

Chapter 2 Phthalocyanine synthesis 12
2.1 The synthesis of unsubstituted Pcs 13
 2.1.1 Metal-free Pc (H_2Pc) 13
 2.1.2 Metal-ion-containing Pcs (MPcs) 14
 2.1.3 Pc sandwich complexes (MPC_2) 15
2.2 Axially substituted Pcs 16
 2.2.1 oxo-Titanium(IV) Pc and related compounds 16
 2.2.2 Axially substituted SiPc, GePc and SnPc 16
2.3 Benzo-substituted Pcs 17
Contents

2.3.1 Tetra-substituted Pcs 18
2.3.2 Peripheral octa(op)-substituted Pcs 20
2.3.3 Non-peripheral octa(onp)-substituted Pcs 22
2.4 Naphthalocyanines (NPcs) 24
2.5 Asymmetrically substituted Pcs 25
2.6 Phthalocyanine polymers 26
 2.6.1 Network polymers 27
 2.6.2 Cofacial (bridged) polymers 28
 2.6.3 Side-chain polymers 30

Chapter 3 The fabrication of phthalocyanine materials 32

3.1 Crystals 32
 3.1.1 The crystal structures of \(H_2\text{Pc} \) and the planar MPcs 33
 3.1.2 The crystal forms of non-planar MPcs 36
 3.1.3 Crystal structures of substituted Pcs 39
3.2 Thin films 41
 3.2.1 Vacuum sublimation 43
 3.2.2 Molecular epitaxial deposition 45
3.3 Langmuir–Blodgett films 47
 3.3.1 Film fabrication 47
 3.3.2 LB film characterisation 50
 3.3.3 LB films from Pcs: a word of caution 50
 3.3.4 LB films from unsubstituted Pc derivatives 51
 3.3.5 Tetra-substituted Pc derivatives 52
 3.3.6 Octa-substituted derivatives 56
 3.3.7 Polymeric LB-film-forming Pcs 57
 3.3.8 General observations on the structure of Pc-derived LB films 57
3.4 Spin-coated Pc films 58
3.5 Electrochemical deposition techniques 60
3.6 Mesomorphic phthalocyanine materials 60
 3.6.1 Mesophase characterisation 62
 3.6.2 Pc mesophases 64
 3.6.3 The number and type of flexible side-chains 65
 3.6.4 The influence of side-chain length 65
 3.6.5 The effects of the linking group and site of substitution 74
 3.6.6 The influence of the central metal ion 77
 3.6.7 The influence of side-chain branching 78
 3.6.8 Non-uniformly substituted Pc mesogens 78
Chapter 4 **Optical properties** 88

4.1 Solution characteristics 88
4.2 Exciton coupling 91
4.3 Structural information from visible absorption spectra of Pc materials 93
4.4 Nonlinear optics 94
 4.4.1 An introduction to nonlinear optics 95
 4.4.2 Pcs as nonlinear optical materials 96
 4.4.3 The outlook for Pcs as NLO materials 99
4.5 Optical data storage 99
4.6 Spectral hole burning 100

Chapter 5 **Electronic conductivity** 101

5.1 A brief description of electronic conductivity in organic materials 102
5.2 Intrinsic electronic conductivity in Pc materials 104
5.3 Conduction in evaporated Pc films 107
5.4 Intrinsic conduction within LB Pc films 109
5.5 The conductivity of undoped polymeric Pcs 110
 5.5.1 The conductivity of polyphthalocyanine (PMPc) 111
 5.5.2 The conductivity of axially bridged polymers 111
5.6 The conductivity of Pc charge-transfer complexes 112
5.7 Partially oxidised polymeric systems 116
 5.7.1 Cofacial Pc polymers 116
 5.7.2 Charge-transfer-complex–polymer composites 117
5.8 Conductivity in columnar Pc liquid crystals 117
5.9 Electronic sensors 119
 5.9.1 Single-crystal studies 120
 5.9.2 Sensors based on sublimed films 120
 5.9.3 Sensors based on polymeric Pc materials 122
 5.9.4 Sensors derived from LB and spin-coated Pc films 122
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9.5</td>
<td>Pc sensors based on effects other than changes in conductivity</td>
<td>124</td>
</tr>
<tr>
<td>5.9.6</td>
<td>Pc-based biosensors</td>
<td>124</td>
</tr>
<tr>
<td>5.9.7</td>
<td>Pc-based sensors: conclusions</td>
<td>124</td>
</tr>
<tr>
<td>5.10</td>
<td>Additional electronic devices based on Pc materials</td>
<td>125</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Optoelectronic properties of phthalocyanine materials</td>
<td>126</td>
</tr>
<tr>
<td>6.1</td>
<td>Photoconductivity</td>
<td>126</td>
</tr>
<tr>
<td>6.1.1</td>
<td>An introduction to xerography</td>
<td>126</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Pc photoconductivity</td>
<td>128</td>
</tr>
<tr>
<td>6.2</td>
<td>Photovoltaic properties: solar energy conversion</td>
<td>131</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Schottky junction devices</td>
<td>132</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Pc-containing p–n junction devices</td>
<td>135</td>
</tr>
<tr>
<td>6.3</td>
<td>Electrochromism</td>
<td>137</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Electrochromism of LB films</td>
<td>138</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Liquid-crystalline electrochromic Pcs</td>
<td>139</td>
</tr>
<tr>
<td>6.3.3</td>
<td>The outlook for Pcs in electrochromic displays</td>
<td>139</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Miscellaneous properties and uses of Pc materials</td>
<td>140</td>
</tr>
<tr>
<td>7.1</td>
<td>Heterogeneous catalysis</td>
<td>140</td>
</tr>
<tr>
<td>7.1.1</td>
<td>The reduction of oxygen and water</td>
<td>140</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Other Pc catalytic processes</td>
<td>142</td>
</tr>
<tr>
<td>7.1.3</td>
<td>The prospects for Pc heterogeneous catalysis</td>
<td>142</td>
</tr>
<tr>
<td>7.2</td>
<td>Adsorption properties</td>
<td>143</td>
</tr>
<tr>
<td>7.3</td>
<td>Magnetic properties</td>
<td>143</td>
</tr>
<tr>
<td>7.4</td>
<td>Applications in nuclear chemistry</td>
<td>144</td>
</tr>
<tr>
<td>7.5</td>
<td>Other uses for Pc materials</td>
<td>144</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Future developments</td>
<td>145</td>
</tr>
<tr>
<td>8.1</td>
<td>Pc synthesis</td>
<td>145</td>
</tr>
<tr>
<td>8.2</td>
<td>Materials fabrication</td>
<td>146</td>
</tr>
<tr>
<td>8.3</td>
<td>Applications – towards molecular-scale devices</td>
<td>147</td>
</tr>
<tr>
<td>8.4</td>
<td>Pc materials: the need for a multidisciplinary approach</td>
<td>149</td>
</tr>
<tr>
<td>Appendix</td>
<td>Commercially available Pcs</td>
<td>151</td>
</tr>
</tbody>
</table>

References 154

Index 184

Colour plates facing p. 78