Container Molecules and Their Guests

Donald J. Cram and Jane M. Cram
University of California
Los Angeles, USA
Contents

Chapter 1 Contexts, Conceptions, Corands, and Coraplexes 1
 1.1 Origins of Host–Guest Chemistry 1
 1.2 Early Types of Hosts, Guests, and Complexes 2
 1.3 Molecular Modules 7
 1.4 Structural Recognition in Complexation 10
 1.5 The Crystal Structures and Molecular Modeling Connection 12

Chapter 2 Spherands, Spheraplexes, and Their Relatives 20
 2.1 Spherands and Spheraplexes 20
 2.2 Syntheses of Spherands 22
 2.3 Crystal Structures for Spherands and Spheraplexes 25
 2.3.1 Non-bridged Hosts 25
 2.3.2 Bridged Hosts 26
 2.4 Hemispherand and Hemispherand Crystal Structures 28
 2.4.1 Three Preorganized Ligands 28
 2.4.2 Four Preorganized Ligands 30
 2.4.3 Cryptahemispherands 31
 2.5 Correlation of Structure and Binding 33
 2.5.1 Determination of Binding Power 33
 2.5.2 Corand and Anisyl Hemispherand Binding Comparison 34
 2.5.3 Cryptahemispherand Binding and Specificity 37
 2.5.4 Spherand Binding and Specificity 37
 2.6 Principles of Complementarity and Preorganization 39
 2.7 Illustration of the Effects of Preorganization on Binding 42
 2.8 Rates of Complexation and Decomplexation of Spherands and Hemispherands 44
Chapter 3
Chiral Recognition in Complexation
3.1 Hosts Containing One Chiral Element
3.2 A Chiral Breeding Cycle
3.3 Hosts Containing Two Chiral Elements
3.4 An Amino Ester Resolving Machine
3.5 Chromatographic Resolution of Racemic Amine Salts
3.6 Failure of a Magnificent Idea Guides Research
3.7 Chiral Catalysis in Michael Addition Reactions
3.8 Chiral Catalysis in Methacrylate Ester Polymerization
3.9 Chiral Catalysis of Additions of Alkyllithiums to Aldehydes

Chapter 4
Partial Enzyme Mimics
4.1 A Partial Transacylase Mimic Based on a Corand
4.1.1 Kinetic Acceleration
4.1.2 Competitive Inhibition
4.1.3 Chiral Recognition
4.1.4 Abiotic and Biotic Comparisons
4.2 Hosts Containing Cyclic Urea Units
4.2.1 Preorganization of Cyclic Urea Units by Anisyl Unit Attachment
4.2.2 Binding Properties of Hosts Containing Multiple Cyclic Urea Units
4.2.3 Crystal Structures
4.2.4 Binding Power Dependence on structure
4.2.5 Highly Preorganized Hosts
4.2.6 An Unusual Color Indicating System
4.3 An Incremental Approach to Serine Protease Mimics
4.3.1 Kinetics of Transacylations
4.3.2 Rate Enhancements Due to Complexation
4.4 Introduction of an Imidazole into a Transacylase Mimic
6.5.1 Partition of Driving Forces Between Two Parameters 127
6.5.2 Solvolytic Effects on Dimerization 127
6.5.3 Balancing of Entropic and Enthalpic Dimerization Effects 128

6.6 Thermodynamic Activation Parameters for Association of Velcrands and Dissociation of Velcraplexes 129

Chapter 7 Carcerands and Carceplexes 131

7.1 Conception 131
7.2 The First Closed Molecular Container Compound 132
7.2.1 Synthesis 132
7.2.2 Characterization 133
7.3 Soluble Carceplexes with CH$_2$SCH$_2$ Connecting Groups 135
7.3.1 Syntheses 136
7.3.2 Characterization 138
7.3.3 Guest Rotations in Carceplexes 139
7.4 Carceplexes with OCH$_2$O Connecting Groups 140
7.4.1 Syntheses 140
7.4.2 Carceplex Crystal Structure 142
7.4.3 Guest Movements in Carceplex 144
7.5 Inner Phase Effects on Physical Properties of Guests 146
7.5.1 Molecular Communication Through the Shell 146
7.5.2 Possible New Type of Diastereoisomerism 147
7.6 Comparisons of Carceplexes, Spheraplexes, Cryptaplexes, Caviplexes, Zeolites, and Clathrates 147

Chapter 8 Hemicarcerands and Constrictive Binding 149

8.1 Hemicarcerand Containing a Single Portal 151
8.1.1 Synthesis 151
8.1.2 Crystal Structure 152
8.1.3 Characterization 153
8.1.4 Decomplexation at High Temperatures and Complexation at Ambient Temperatures 154
8.1.5 Complexation at Elevated Temperatures 156
8.2 Hemicarcerand Containing Four Potential Portals 158
8.2.1 Synthesis 158
8.2.2 Crystal Structure 159
8.2.3 Guest Variation in Hemicarceplexes 160
8.2.4 Rotations of Guests Relative to Host 161
8.2.5 Proton Magnetic Resonance Spectra of Guests in Hemicarceplex 162
8.2.6 Mechanism of Guest Substitution of Hemicarceplexes 162
8.2.7 Dependence of Decomplexation Rates on Guest Structures 163
8.2.8 Constrictive and Intrinsic Binding 164
8.2.9 Driving Forces for Intrinsic and Constrictive Binding 166
8.3 Chiral Recognition by Hemicarceplexes 167

Chapter 9 Varieties of Hemicarceplexes 170
9.1 An Octalactone as a Hemicarceplex 170
9.2 An Octaamidine as a Hemicarceplex 172
9.2.1 Synthesis and Characterization 172
9.2.2 Complexation 173
9.2.3 Decomplexation 174
9.2.4 Crystal Structure 175
9.3 An Octaamide as a Hemicarceplex 176
9.3.1 Syntheses and Characterization 176
9.3.2 Crystal Structure 177
9.3.3 Complexation 180
9.4 A Near Hemicarceplex Based on [1.1.1]Orthocyclophane Units 180
9.4.1 Syntheses 181
9.4.2 Crystal Structures 182
9.4.3 Characterization 183
9.4.4 Complexation 184
9.5 Rigidly Hollow Hosts That Encapsulate Small Guests 185
9.5.1 Synthesis 185
9.5.2 Crystal Structures 186
9.5.3 Complexation of Tritosylamide Host 187
9.5.4 Complexation of Triamine Host 188
9.6 A Host with a Large Cavity 189
9.6.1 Synthesis 190
9.6.2 Complexation 190
9.6.3 Correlation of Decomplexation Rates with Guest Structures 192
9.7 A Highly Adaptive and Strongly Binding Hemispherand
 9.7.1 Synthesis
 9.7.2 Complexation
 9.7.3 Structural Recognition in Complexation
 9.7.4 Crystal Structures
 9.7.5 The Unusual Guest Structure in 52-6H_2O

Chapter 10 Reactions of Complexed Hosts, of Incarcerated Guests, and Hosts Protection of Guests from Self Destruction

10.1 Energy Barriers to Amide Rotations in the Inner Phase of a Carcerand
10.2 Acidity of Amine Salts in the Inner Phase of a Hemicarcerand
10.3 Hemicarcerand as a Protecting Container
10.4 A Thermal-Photochemical Reaction Cycle Conducted in the Inner Phase of a Hemicarcerand
10.5 Cyclobutadiene Stabilized by Incarceration
10.6 Oxidations and Reductions of Incarcerated Guests
10.7 Reductions of the Host of Hemicarceplexes
 10.7.1 Octaimine Reductions
 10.7.2 Reduction of Hemicarceplexes with Four Acetylenic Bridges

Subject Index