Antenna Theory and Design
SECOND EDITION

Warren L. Stutzman
Gary A. Thiele
Contents

Chapter 1 • Antenna Fundamentals and Definitions

1.1 Introduction 1
1.2 How Antennas Radiate 4
1.3 Overview of Antennas 8
1.4 Electromagnetic Fundamentals 12
1.5 Solution of Maxwell’s Equations for Radiation Problems 16
1.6 The Ideal Dipole 20
1.7 Radiation Patterns 24
 1.7.1 Radiation Pattern Basics 24
 1.7.2 Radiation from Line Currents 25
 1.7.3 Far-Field Conditions and Field Regions 28
 1.7.4 Steps in the Evaluation of Radiation Fields 31
 1.7.5 Radiation Pattern Definitions 33
 1.7.6 Radiation Pattern Parameters 35
1.8 Directivity and Gain 37
1.9 Antenna Impedance, Radiation Efficiency, and the Short Dipole 43
1.10 Antenna Polarization 48
References 52
Problems 52

Chapter 2 • Some Simple Radiating Systems and Antenna Practice

2.1 Electrically Small Dipoles 56
2.2 Dipoles 59
2.3 Antennas Above a Perfect Ground Plane 63
 2.3.1 Image Theory 63
 2.3.2 Monopoles 66
2.4 Small Loop Antennas 68
 2.4.1 Duality 68
 2.4.2 The Small Loop Antenna 71
2.5 Antennas in Communication Systems 76
2.6 Practical Considerations for Electrically Small Antennas 82
References 83
Problems 84

Chapter 3 • Arrays

3.1 The Array Factor for Linear Arrays 88
3.2 Uniformly Excited, Equally Spaced Linear Arrays 99
 3.2.1 The Array Factor Expression 99
 3.2.2 Main Beam Scanning and Beamwidth 102
 3.2.3 The Ordinary Endfire Array 103
 3.2.4 The Hansen–Woodyard Endfire Array 105
3.3 Pattern Multiplication 107
3.4 Directivity of Uniformly Excited, Equally Spaced Linear Arrays 112
3.5 Nonuniformly Excited, Equally Spaced Linear Arrays 116
Chapter 4 • Line Sources

4.1 The Uniform Line Source 143
4.2 Tapered Line Sources 152
4.3 Fourier Transform Relations Between the Far-Field Pattern and the Source Distribution 157
4.4 Superdirective Line Sources 159
References 163
Problems 163

Chapter 5 • Resonant Antennas: Wires and Patches

5.1 Dipole Antennas 165
5.1.1 Straight Wire Dipoles 165
5.1.2 The Vee Dipole 173
5.2 Folded Dipole Antennas 175
5.3 Feeding Wire Antennas 180
5.4 Yagi–Uda Antennas 187
5.5 Corner Reflector Antennas 196
5.6 Wire Antennas Above an Imperfect Ground Plane 198
5.6.1 Pattern Effects of a Real Earth Ground Plane 198
5.6.2 Ground Plane Construction 203
5.7 Large Loop Antennas 205
5.8 Microstrip Antennas 210
5.8.1 Microstrip Patch Antennas 210
5.8.2 Microstrip Arrays 216
References 218
Problems 219

Chapter 6 • Broadband Antennas

6.1 Traveling-Wave Wire Antennas 225
6.2 Helical Antennas 231
6.2.1 Normal Mode Helix Antenna 232
6.2.2 Axial Mode Helix Antenna 235
6.3 Biconical Antennas 240
6.3.1 Infinite Biconical Antenna 240
6.3.2 Finite Biconical Antenna 242
6.3.3 Discone Antenna 243
6.4 Sleeve Antennas 246
6.4.1 Sleeve Monopoles 246
6.4.2 Sleeve Dipoles 248
6.5 Principles of Frequency-Independent Antennas 250
Appendix A • Tables of Commonly Used Frequencies 621
 A.1 Radio Frequency Bands 621
 A.2 Television Channel Frequencies 621
 A.3 Mobile Telephone Bands 622
 A.4 Radar Bands 622

Appendix B • Data Material and Other Constants 623
 B.1 Conductivities of Good Conductors 623
 B.2 Wire Data 623
 B.3 Dielectric Constant: Permittivity 624
 B.4 Permeability 624
 B.5 Velocity of Light 624
 B.6 Intrinsic Impedance of Free Space 624

Appendix C • Vectors 625
 C.1 Unit Vector Representations 625
 C.2 Vector Identities 625
 C.3 Vector Differential Operators 626

Appendix D • Trigonometric Relations 628

Appendix E • Hyperbolic Relations 630

Appendix F • Useful Mathematical Relations 631
 F.1 Dirac Delta Function 631
 F.2 Binomial Theorem 631
 F.3 Bessel Functions 631
 F.4 Some Useful Integrals 632

Appendix G • Computing Packages 633
 G.1 General Antenna Package: APV 633
 G.2 Array Plotting Package: PCARRPAT 633
 G.3 Wire Antenna Code: WIRE 634
 G.4 Parabolic Reflector Antenna Code: PRAC 634
 G.5 Diffraction Codes 634

Appendix H • Bibliography 636

Index 643