Modern Techniques in Applied Molecular Spectroscopy

Edited by

FRANCIS M. MIRABELLA
Equistar Chemicals, LP

A Wiley-Interscience Publication
JOHN WILEY & SONS, INC.
New York • Chichester • Weinheim • Brisbane • Singapore • Toronto
Contents

 Preface xiii
 List of Contributors xv

1 Introduction

Francis M. Mirabella

1.1. Transmission Spectroscopy 4
1.2. Specular Reflectance Spectroscopy 5
1.3. Attenuated Total Reflectance Spectroscopy 5
1.4. Diffuse Reflectance Spectroscopy 6
1.5. Photoacoustic Spectroscopy 7
1.6. Infrared Microspectroscopy 7
1.7. Raman Microspectroscopy 8
1.8. Fiber Optics Techniques 9
1.9. Emission Spectroscopy 9
References 10

Contents

References 71
Glossary 80

3 Specular Reflection Spectroscopy
Robert J. Lippert, Brian D. Lamp, and Marc D. Porter

3.1. Introduction 83
3.2. Theoretical Considerations 84
- Propagation of Electromagnetic Radiation through a Noncon ducting Homogeneous Medium 85
- Reflection of Electromagnetic Radiation at a Boundary between Homogeneous Media of Different Optical Properties 89
- Band Distortions 95
- Orientation Analysis 102
3.3. Experimental Considerations 104
3.4. Applications 110
- Organized Thin Films 110
- Redox Transformations at Electrochemical Interfaces 114
- Aluminum Nitride Thin-Film Characterization 122
3.5. Conclusions and Prospectus 124
References 124

4 Attenuated Total Reflection Spectroscopy
Francis M. Mirabella

4.1. Introduction 127
4.2. History 128
4.3. Principles and Theory 132
4.4. Practical Considerations 142
4.5. Advantages and Disadvantages 153
- Advantages 153
- Disadvantages 156
4.6. Spectral Regions and Spectral Techniques Employing ATR 159
4.7. Applications of ATR Spectroscopy 160
- Surface Chemistry 160
- Surface Orientation 175
- Specific Experimental Details 178
4.8. Conclusion 183
References 183
5 Diffuse Reflectance Spectroscopy 185
Jonathan P. Blitz

5.1. Introduction 185
5.2. Role of Diffuse Reflectance in Molecular Spectroscopy 187
5.3. Diffuse Reflectance Theory and Practice 189
 Fresnel and Kubelka-Munk Reflectance 189
 Kubelka-Munk Theory 192
 The Practice of Diffuse Reflectance Spectroscopy 198
5.4. Applications of Diffuse Reflectance Spectroscopy 208
 Diffuse Reflectance UV-Visible Spectroscopy 208
 Diffuse Reflectance Near-Infrared Spectroscopy 209
 Diffuse Reflectance Mid-Infrared Spectroscopy 212
5.5. Conclusions 216
References 217

6 Photoacoustic Spectroscopy 221
J. F. McClelland, S. J. Bajic, R. W. Jones, and L. M. Seaverson

6.1. Introduction 221
 History and Basic Idea of PAS 222
 Controllable Sampling Depth 223
 Practical Uses of Controllable Sampling Depth 224
6.2. Signal Generation Theory and Data Analysis Treatments 225
 Magnitude of the Photoacoustic Signal 226
 Phase of the Photoacoustic Signal 227
 Photoacoustic Signal Saturation 228
 Sampling Depth 230
 Interpretation of Photoacoustic Signal Phase Data 232
6.3. Instrumentation 236
 Photoacoustic Detector 236
 FTIR Spectrometer 242
 Phase Modulation 245
6.4. Applications 248
 Rapid Identification of Polymers for Recycling 248
 Quantitative Analysis of Major and Minor Concentrations of
 Additives in Paper Products 249
 Analysis of Aqueous Sludges with Soluble and Insoluble
 Species 251
 Quantitation of CaCO₃ Residual in Lime 255
9.2. Theory
- Blackbody Radiation 325
- Real-Sample (Graybody) Radiation 329
- Infrared Emission Spectroscopy of Semitransparent Thin Films 330
- Stray Light 333
- Emission Band Distortions 334
- Temperature Determination 336

9.3. Experimental Considerations
- Spectrometers 338
- Constant Temperature IR Emission Attachments 339
- Transient Infrared Emission Spectroscopy 341
- Multivariate Calibration 342

9.4. Applications
- Gas Phase Studies 343
- Small Molecules on Surfaces 345
- Characterization of Solid Samples 345
- Atmospheric Studies 348
- Planetary Observations 348
- Minerals and Mineral Deposits 349
- Organic Thin Films 351
- Dielectric Thin Films 357

9.5. Conclusion
References 371

10 Fiber Optics in Molecular Spectroscopy 377

Chris W. Brown

10.1. Introduction
- Description of Optical Fibers 377
- Internal Reflection Considerations 378
- Core-Cladding 379
- Evanescent Wave 379
- Fiber Throughput 380

10.2. Selecting Fibers 380
- Optical Regions 380
- Single Fibers or Bundles as Probes 384

10.3. Interfacing Fibers 386
- Spectrometer Accessories 386
Contents

Coupling Fibers to Spectrometer Accessories 387

10.4. Sampling Configuration 387
 Straight-through Transmission Probes 387
 Reflection-Absorption Probes 388
 Evanescent Wave Probes 388
 Fiber Optic Lenses 389

10.5. Applications 390
 Drug Dissolution 390
 Water Analysis in the Near-IR 393
 Gas Analysis in the Near-IR 396
 Lamination Monitoring in the Mid-IR 397

10.6. Conclusion 400

References 400

Index 403