Solvatochromism

Paul Suppan and Nagwa Ghoneim
University of Fribourg, Switzerland
Contents

Chapter 1 Introduction

1.1 Fundamentals of Electronic Absorption and Emission Spectra
 1.1.1 Energy States of Molecules
 1.1.2 Orbital Description of Electronic States
 1.1.3 Potential Energy Diagrams of Electronic Transitions
 1.1.4 Transitions Between Electronic States
 1.1.4.1 Radiative Transitions
 1.1.4.2 Non-radiative Transitions
 1.1.5 The Transition Moment
 1.1.6 Einstein Coefficients, Oscillator Strength, Extinction Coefficient and Absorbance
 1.1.7 Luminescence
 1.1.8 Quenching Action of Polar Solvents
 1.1.9 Quenching Action of Protic Solvents
 1.1.10 Solvent Relaxation in Luminescence Spectroscopy
 1.1.11 Band Shapes: Spectral Broadening
 1.1.11.1 Rotational and Vibrational Sub-levels
 1.1.11.2 Inhomogeneous Broadening
 1.1.11.3 The Stokes Shift
 1.1.12 Energy Transfer
 1.1.13 Acid–Base Equilibria
 1.2 References

Chapter 2 Theory of Solute–Solvent Interactions

2.1 Introduction and General Remarks
2.2 Solvation (Theoretical and Empirical Models)
 2.2.1 Empirical Scales of Solvent Polarity
 2.2.1.1 The \(E_T(30) \) Scale
 2.2.1.2 The \(Z \) Polarity Scale
 2.2.1.3 Multi-parameter Polarity Scales
 2.2.2 ‘Donor Number’ and ‘Acceptor Number’ Scales in the Spectroscopy of Metal Complexes
 2.3 Non-specific Interactions
2.3.1 The Multipole Expansion
 2.3.1.1 The Dipole Moment
 2.3.1.2 The Quadrupole Moment
 2.3.1.3 The Polarizability
 2.3.1.4 Molecular Volume, Molecular Radius
 2.3.1.5 Dielectric Constant, Refractive Index, Clausius–
 Mosotti and Debye Equations
 2.3.1.6 The Onsager Reaction Field Model

2.3.2 The Five Interaction Terms

2.3.3 Dipole–Dipole Interactions

2.3.4 Solute Dipole–Solvent Induced Dipole (Polarizability)
 Interactions

2.3.5 Dispersion Interactions

2.3.6 Non-polar (but Polarizable) Solute–Polar Solvent
 Interactions (Solvent Stark Effect)

2.3.7 The Transition Dipole Term

2.3.8 Effect of Solvent on Molecular Electronic Oscillator
 Strengths

2.4 Specific Interactions

2.4.1 Hydrogen Bonding Effects

2.4.2 Physical Model of H-bonding Interaction

2.4.3 Red Shift H-bonding Anomalies

2.5 Higher Multipole Interactions

2.5.1 Solute Quadrupole–Solvent Dipole

2.5.2 Solute Dipole–Solvent Quadrupole

2.6 Solvation of Excimers and Exciplexes

2.7 Dielectric Saturation

2.8 Solvent Polarity Functions

2.8.1 Anomalous Solvents

2.9 Timescales of Solvation

2.9.1 Solvent Relaxation

2.9.1.1 Viscosity and Temperature Dependence of
 Solvent Relaxation

2.9.2 Diffusion of Liquids

2.10 ‘Outer-sphere Reorganization Energy’ in Electron Transfer
 Processes

2.11 Excited States of the Solvent

2.12 References

Chapter 3 Solvatochromic Shifts of Absorption Spectra
3.1.2.3 \(l-\pi^*/\pi-\pi^* \) Transitions in Substituted Aromatic Chromophores 70
3.1.2.4 \(\pi-\pi^* \) Transitions in Acceptor Aromatic Molecules 70
3.1.2.5 \(\pi-\pi^*/CT \) Transitions in D–Ar–A Molecules 71

3.2 Non-specific Interactions 72
3.2.1 Non-polar Solutes in Non-polar Solvents 72
3.2.2 Non-polar Solutes in Polar Solvents 74
3.2.3 Dipolar Solutes in Non-polar Solvents 75
3.2.4 Dipolar Solutes in Polar Solvents 76

3.3 Specific Solvent Effects on Absorption Spectra 78
3.4 Artefacts in Absorption Spectra 80
3.4.1 Absorption by the Solvent 80
3.4.2 Optical Artefacts 80
3.4.3 Artefacts due to the Fluorescence of the Sample 81

3.5 Hyperchromism and Hypochromism 81
3.6 Triplet-Triplet Absorption Spectra 82
3.7 ‘Charge Transfer’ Complexes 85
3.8 Metal Complexes 88
3.8.1 Intervalance Metal Complexes 88
3.9 Dipolar Molecules with Ions and Ion Clusters 90
3.10 Diffuse Reflectance Spectroscopy 94
3.11 References 95

Chapter 4 Solvatochromic Shifts of Luminescence Spectra 96

4.1 Introduction 96
4.2 General Remarks about Luminescence Spectra 97
4.2.1 Recording and Correction of Luminescence Spectra 98
4.3 Steady-state Fluorescence Spectra 99
4.3.1 Fluorescence Spectra of Non-polar Molecules in Non-Polar Solvents 100
4.3.2 Fluorescence Spectra of Non-polar Molecules in Polar Solvents 100
4.3.3 Fluorescence Spectra of Dipolar Molecules 101
4.3.3.1 Amino Aromatics 101
4.3.3.2 Hydroxy Aromatics 103
4.3.3.3 Carbonyl Compounds 105
4.3.3.4 Nitro Compounds 105
4.3.3.5 Cyano Derivatives 105
4.3.3.6 Halogenated Aromatic Compounds 106
4.3.3.7 Phthalimides and Related Compounds 107
4.3.4 Electron Donor–Aromatic Acceptor Molecules (D–Ar–A) 107
4.3.5 Intramolecular Electron Transfer 110
4.3.5.1 The TICT States 110
4.3.6 Intramolecular Charge Transfer in Rigid Molecules 115
4.3.7 Protolytic Equilibria 118
4.3.7.1 The Dual Luminescence of 9-Anthracenecarboxylic Acid (9-ACA) 119
4.3.8 Shapes of Luminescence Spectra: 'Red Drop' 120
4.3.9 Luminescence of Metal Complexes 120
4.4 Steady-state Phosphorescence Spectra and Lifetimes 121
4.5 Time-resolved Luminescence Spectra 123
4.5.1 Experimental Techniques 124
4.5.1.1 Combination of Kinetic Traces 124
4.5.1.2 Gated Spectra 124
4.5.1.3 Streak Camera 125
4.5.2 Solvation Processes in Single Solvents 125
4.5.3 Artefacts and Problems in Luminescence Spectroscopy 128
4.5.3.1 Second-order Excitation Scatter 128
4.5.3.2 Luminescence 'Blank' and Solvent Raman Scattering 130
4.5.3.3 Excitation Light Absorption and Luminescence Light Reabsorption (in Conditions of Right-angle and Front-face Illumination) 131
4.6 Excimers (Excited Dimers) 132
4.7 Exciplexes (Excited Complexes) 134
4.7.1 Dipole Moments and Charge Separation: Quenching Effect of Polar Solvents 136
4.7.2 Effect of Solvent Polarity on Dipole Moment 137
4.7.3 Intramolecular Exciplexes 138
4.7.4 Triplexes: Triple Complexes in the Excited State 139
4.8 Emission Spectra from Upper Excited States 140
4.9 References 142

Chapter 5 Solvatochromic Shifts in Rigid Media and Organized Systems 144

5.1 Introduction 144
5.1.1 Types of Rigid Media: 'Solids' and Organized Systems 145
5.2 Glassy Matrices 145
5.3 Microcrystalline Media 146
5.3.1 Inorganic Ions in Crystals 148
5.4 Metal Complexes in Polyelectrolytes 149
5.5 Micellar Suspensions 151
5.6 Molecular Films 153
5.7 Shpolskii Spectra 160
5.8 References 162

Chapter 6 Solvatochromic Shifts in Liquid and Solid Mixtures 163

6.1 Introduction 163
6.2 Dielectric Enrichment 165
Contents

6.2.1 Dielectric Enrichment of Quadrupolar Solutes 169
6.2.2 Preferential Solvation of the Solvated Electron 170
6.2.3 Kinetics of Dielectric Enrichment; Local Polarity of Excited States 170
6.2.3.1 The Timescale of Dielectric Enrichment 172
6.2.4 Solvatochromic Shifts of Exciplex Emission Spectra in Solvent Mixtures 172
6.3 Hydrogen Bonding 172
6.4 Solvent–Solvent Interactions 175
6.5 Time-resolved Spectra 176
6.6 Mixed Solids 177
6.6.1 Polarity of Mixed Polymers 179
6.7 References 181

Chapter 7 Solvatochromic Shifts in Supercritical Fluids and Molecular Beams 183

7.1 Introduction 183
7.2 Supercritical Fluids: Two- and Three-component Mixtures 184
7.3 Clusters in Molecular Beams 186
7.3.1 Formation of Molecular Beams 187
7.3.2 Solvation by Rare Gas Solvent Clusters 187
7.3.2.1 Laser-induced Fluorescence (LIF) 187
7.3.2.2 Resonant Double-photon Ionization (R2PI) 187
7.4 Spectral Properties of Clusters 188
7.4.1 Spectra and Properties of CzAr\textsubscript{n} Clusters 188
7.4.2 Van der Waals Clusters between Non-polar Solutes and ‘Solvents’ 189
7.4.3 DMABN–Water Clusters 191
7.4.4 4-Aminobenzonitrile Complexes 192
7.5 References 193

Chapter 8 Solvatochromic Shifts of Molecular Ions 194

8.1 Introduction 194
8.1.1 Modes of Formation of Molecular Radical Ions 194
8.2 Ions in Single Solvents 196
8.2.1 Absorption Spectrum of the Solvated Electron 197
8.2.2 Ion Solvation: The Born Equation 198
8.2.3 Time-resolved Spectra 200
8.3 Ions in Solvent Mixtures 202
8.4 Solvation Dynamics 203
8.4.1 Solvation Dynamics of the Electron e\textsubscript{solv} or e\textsubscript{aq} 203
8.5 Ions in Rigid Matrices 204
8.5.1 Radical Ions in Zeolites 207
8.6 References 209
Chapter 9 Thermochromic Shifts 210

9.1 Introduction: Temperature Dependence of the Density, Dielectric Constant and Refractive Index 210
 9.1.1 Density 210
 9.1.2 Dielectric Constant 211
 9.1.3 Refractive Index 211
 9.1.3.1 Non-polar Solutes in Non-polar Solvents 212
 9.1.3.2 Dipolar Solute–Non-polar Solvent 212
 9.1.3.3 Dipolar Solutes in Polar Solvents 213
 9.2 Absorption Spectra 214
 9.3 Thermochromic Shifts of Luminescence Spectra 216
 9.4 Thermochromic Shifts of Exciplex Fluorescence Spectra 217
 9.5 Thermochromic Shifts in Solvent Mixtures 218
 9.5.1 Hydrogen Bonding Mixtures 219
 9.6 References 220

Chapter 10 Fluorescent Probes in Biological Systems 221

10.1 Introduction 221
10.2 Protein Detection 221
10.3 Nucleic Acid Detection 221
10.4 Physiological Ion Indicators 223
10.5 Enzyme-labelled Fluorescence 223
10.6 Intrinsic Fluorescence of Normal and Cancer Cells 224
10.7 External Fluorescence Probes of Binding Sites 226
10.8 Solvatochromic pH Indicators 229
10.9 The Environment of Visual Pigments 229
10.10 Fluorescent Probes of Serum Albumins 230
10.11 References 232

Chapter 11 External Effects on Radiative and Non-radiative Transitions 233

11.1 Introduction 233
11.2 Electrochromic Shifts 233
 11.2.1 Some Examples and Applications of Electrochromic Shifts 234
 11.2.1.1 Intramolecular Electrochromism 236
11.3 Pressure Shifts (Piezochromism) 236
11.4 External Magnetic Fields 238
11.5 References 239

Chapter 12 Theoretical Calculations and Computer Simulations 240

12.1 Introduction 240
 12.1.1 What is a ‘Computer Experiment’? 241
12.2 Molecular Dynamics and Monte Carlo Simulations 241
 12.2.1 How Realistic are these Simulations? 242
12.3 Electron Distributions of Excited Molecules 242
 12.3.1 Charge Densities in $n-\pi^*$ States 242
 12.3.2 Electron Distributions in Charge-transfer States 243
12.4 Solvent–Solute Clusters as Models of Elementary Solvation 244
12.5 Intermolecular Potentials 244
 12.5.1 Simulations of Dielectric Saturation 246
12.6 References 246

Chapter 13 Applications 247

13.1 Excited State Properties 247
 13.1.1 Excited State Dipole Moments 247
 13.1.1.1 Direct Measurements of Absorption or Emission Spectra 248
 13.1.1.2 The Solvent-dependent Stokes Shift of the Absorption and Emission Spectra (the ‘Lippert’ Method) 248
 13.1.1.3 The Ratio Method 248
 13.1.1.4 The 'Absolute' Method 250
 13.1.2 Polarizabilities of Excited Molecules 252

13.2 Solvent Effects in Photochemistry 252
 13.2.1 Photoreduction of 4-Aminobenzophenone 253

13.3 Analytical Methods 254

13.4 Microenvironment of Polymers 255

13.5 Fluorescent Probes for Monitoring Photopolymerization 258

13.6 References 259

Appendices 260

Subject Index 270