Contents

List of contributors

Foreword

Acknowledgements

1 Fundamentals of electromagnetism

- **1.1 Maxwell's equations**
 - 1.1.1 Maxwell’s equations in an arbitrary medium
 - 1.1.2 Linear media
 - 1.1.3 Conducting media
 - 1.1.4 Reciprocity theorem
- **1.2 Power and energy**
 - 1.2.1 Power volume densities
 - 1.2.2 Energy volume densities
 - 1.2.3 Poynting vector and power
- **1.3 Plane waves in linear media**
 - 1.3.1 Plane waves in an isotropic linear medium
 - 1.3.2 Skin effect

Further reading
Exercises

2 Radiation

- **2.1 Plane wave spectrum**
 - 2.1.1 Spectral domain
 - 2.1.2 Electromagnetic field in a semi-infinite space with no sources
 - 2.1.3 The far field
- **2.2 Kirchhoff’s formulation**
 - 2.2.1 Green’s identity and Green’s functions
 - 2.2.2 Kirchhoff’s integral formulation
 - 2.2.3 Plane wave spectrum and Kirchhoff’s formulation

Further reading
Exercises

3 Antennas in transmission

- **3.1 Far field radiation**
 - 3.1.1 Vector characteristic of the radiation from the antenna
 - 3.1.2 Translation theorem
 - 3.1.3 Application: radiation produced by an arbitrary current
 - 3.1.4 Radiated power

Exercises
8.2 Horns
 8.2.1 General properties 223
 8.2.2 Small flare angle horns and open-ended guides 224
 8.2.3 Flared horns 225
 8.2.4 Multimode horns 226
8.3 Hybrid modes and corrugated horns
 8.3.1 Circular aperture radiating a pure polarization 229
 8.3.2 Search for hybrid mode waves 229
 8.3.3 Radiation pattern 235
Further reading
Exercises

9 Axially symmetric systems
 9.1 Introduction 244
 9.2 Symmetry properties - propagation of polarization, radiation patterns 245
 9.3 Principal surface
 9.3.1 Definition 247
 9.3.2 Pupil - aperture angle - focal length 248
 9.3.3 Equivalent aperture of the system 249
 9.4 Transfer function 250
9.5 System gain
 9.5.1 General expression 252
 9.5.2 Expression obtained from the primary gain $g^'$ and the transfer function 253
 9.5.3 Effect of various factors in the gain function 253
 9.5.4 Concept of optimal primary directivity 255
 9.6 Radiation patterns
 9.6.1 Equivalent aperture illumination 258
 9.6.2 Axisymmetric primary pattern with pure polarization 258
 9.6.3 Effect of blockage 260
 9.7 Aberrations in axially-symmetric systems
 9.7.1 Introduction 262
 9.7.2 Main aberrations in the defocusing plane 262
 9.8 Axially symmetric systems considered in reception
 9.8.1 Effect of transfer function 267
 9.8.2 Diffraction in the vicinity of the focus F of an element dS' of a spherical wave S' 269
 9.8.3 Analysis of a diffraction pattern - contribution of an elementary crown of the spherical wave - hybrid waves 270
 9.8.4 Axial field 271
 9.8.5 Transverse distribution of the diffracted field in the focal plane 272
 9.8.6 Axially-symmetric systems with a small aperture θ_0 273
Further reading
Exercises

10 Focused systems
 10.1 Introduction 297
 10.2 The Cassegrain antenna
 10.2.1 Introduction 298
 10.2.2 Geometry 299
 10.2.3 Equivalent primary feed 301
 10.2.4 Principal surface 302
 10.2.5 Cassegrain with shaped reflectors 303
 10.2.6 Diffraction pattern of the subreflector 306
 10.2.7 Blockage by the subreflector 312
 10.2.8 Schwartzschild aplanetic reflector 316
 10.3 Tracking Systems
 10.3.1 Introduction 317
 10.3.2 General characteristics of radar echoes 319
 10.3.3 Conical scanning 324
 10.3.4 'Monopulse' antennas 332
 10.3.5 Beacon tracking 349
 10.4 Non axially-symmetric Systems
 10.4.1 Offset reflector 349
 10.4.2 Shaped reflectors - pattern synthesis 353
Further reading
Exercises

11 Arrays
 11.1 Introduction 363
 11.1.1 Phased arrays 364
 11.1.2 Bandwidth - use of delay lines - subarrays 364
11.1.3 Active arrays 366
11.2 General structure of a phased array (examples) 368
11.2.1 General structure 368
11.2.2 Examples of array structures 373
11.3 Linear array theory 378
11.3.1 Basic equation - array factor 378
11.3.2 Uniform illumination and constant phase gradient 379
11.3.3 Half-power beamwidth 382
11.3.4 Condition to prevent grating lobes from occurring in the scanning region 383
11.3.5 Effect of weighting of the array illumination function 384
11.3.6 Effect of element directivity 384
11.4 Variation of gain as a function of direction 385
11.4.1 Array operating on transmit 385
11.4.2 Array on receive 387
11.4.3 Array active reflection coefficient - mutual coupling 388
11.4.4 Blind angle phenomenon 389
11.4.5 Case where the element spacing is relatively large 392
11.4.6 Study of an array of open-ended guides considered as a periodic structure 392
11.5 Effects of phase quantization 394
11.5.1 Case where all phase shifters are fed in phase 394
11.5.2 Effects of quantization when the phase origin varies from one phase shifter to another 396
11.6 Frequency-scanned arrays 400
11.7 Analogue beamforming matrices 402
11.7.1 Introduction 402
11.7.2 General properties of multi-port networks 403
11.7.3 Beamforming applications 405
11.7.4 Examples of matrices 408
11.7.5 Non-orthogonal directional beams 414
11.8 Further topics 418
11.8.1 Active modules 418
11.8.2 Digital beamforming 422
11.8.3 Circular, cylindrical and conformal arrays 425
11.8.4 Sparse and random arrays 434
Appendix 11A Comparison of linear and circular arrays 440
Further reading 447
Exercises 448

12 Fundamentals of polarimetry 451
12.1 Introduction 451
12.1.1 Application of polarimetry in radar and telecommunications 451
12.1.2 Some historical references 453
12.1.3 Basics 453
12.2 Fully polarized waves 455
12.2.1 Definition 455
12.2.2 Algebraic representation of elliptical polarization 456
12.2.3 Normalized Cartesian coordinate system 457
12.2.4 Base of circular polarizations 458
12.2.5 Polarization ratio 460
12.2.6 Polarization diagram 461
12.2.7 Polarization coupling to the receiving antenna 464
12.3 Partially polarized waves 467
12.3.1 Definition and physical origin 467
12.3.2 Coherence matrix 469
12.3.3 Completely unpolarized wave 471
12.3.4 Completely polarized wave 472
12.3.5 Stokes parameters 473
12.3.6 Decomposition of a partially polarized wave 474
12.3.7 Geometrical interpretation of the preceding results: Stokes parameters and Poincaré sphere 474
12.3.8 Polarization coupling and Stokes vectors 476
12.4 Polarimetric representation of radar targets 479
12.4.1 Introduction 479
12.4.2 Sinclair diffraction matrix 479
12.5 Partially polarized waves: The Mueller Matrix 490
12.5.1 The Mueller matrix 490
12.5.2 Application example 490
12.5.3 Examples of responses to different incident polarizations 492
12.6 Polarizers and polarization separators for telecommunications antennas and polarimetric radars 494
12.6.1 Introduction 494
12.6.2 Non-symmetrical polarization separator 494
12.6.3 Semi-symmetrical polarization separator 495
12.6.4 Symmetrical polarization separator (turnstile) 496
12.6.5 Dielectric vane polarizer 497
Further reading 499
Exercises 499

13 Antennas and signal theory 500
13.1 Introduction 500
13.2 Equivalence of an aperture and a spatial frequency filter 501
13.2.1 Concept of spatial frequency 501
13.2.2 Consequences of the limitation of the aperture dimensions on the properties of the radiation characteristic function 502
13.2.3 Consequences of the limitation of the aperture dimensions
14 Signal processing antennas

14.1 Introduction 528
14.2 Synthetic antennas in radar and sonar 529
14.2.1 Principles of synthetic antennas 529
14.2.2 Synthetic receive array with non-directional beam 530
14.2.3 Synthetic receive array with multiple beams 531
14.2.4 Examples of spatio-temporal coding 532
14.3 Imaging of coherent sources 537
14.3.1 Introduction 537
14.3.2 Two-source distribution 538
14.3.3 Estimation of the elevation angle of a low-altitude target above a reflecting plane 539
14.3.4 Effect of noise: a posteriori probabilities and decision theory 541
14.4 Imaging of incoherent sources 544
14.4.1 Introduction 544
14.4.2 Conditions for incoherence 544
14.4.3 Multiplicative arrays 545
14.4.4 Relationship between an angular distribution of incoherent sources and the observed field: the Van Cittert-Zernicke Theorem 548
14.4.5 Sampling of the coherence function 551
14.4.6 Measurement of the coefficients of correlation or covariance \(C(n-n') \) 551
14.4.7 The covariance matrix 553
14.5 High resolution imagery and the maximum entropy method 554
14.5.1 Introduction 554
14.5.2 Classical method of 'correlogram' 555
14.5.3 Method of Maximum Entropy 556
14.5.4 Estimation of \(T(r) \) under conditions of Maximum Entropy 557
14.5.5 Factorization of \(T(r) \) - properties 558
14.5.6 Determination of the coefficients \(a_n \) in equation (14.71) 558
14.5.7 Generalization: ARMA model 560
14.5.8 Numerical example 560
14.5.9 Minimum redundancy arrays 561
14.6 Other methods of spectral estimation 563
14.6.1 Introduction 563
14.6.2 The MUSIC algorithm 564
14.6.3 Other superresolution algorithms 567
14.6.4 Superresolution with circular arrays 569
14.7 Spatial filtering 570
14.7.1 Introduction 570
14.7.2 What is an adaptive array? 570
14.7.3 Simple example: two-element array 571
14.7.4 Howells-Applebaum correlation loop 574
14.7.5 Minimum noise criterion 577
14.7.6 Effect of internal receiver noise 578
14.7.7 Time-domain behaviour of the correlation loop 579
14.7.8 Multiple correlation loops: the coherent sidelobe canceller (CSLC) 583
14.7.9 The optimum array 585
14.7.10 Interpretation 588
14.7.11 Digital implementation 590
Appendix 14A Entropy and probability 590
Further reading 597
Exercises 598

15 Antenna measurements

15.1 Introduction 600
15.2 Gain measurements 601
15.2.1 Comparison with a standard-gain horn 601
15.2.2 Two-antenna measurement 602
15.2.3 Three-antenna measurement 602
15.2.4 Extrapolation 602
15.3 Radiation pattern measurements 604
15.3.1 Anechoic chambers and far-field ranges 604
15.3.2 Compact ranges 608
15.3.3 Wavefront quality 610
15.3.4 Near-field techniques 611
15.3.5 Other techniques 613