Viscoelastic Structures
Mechanics of Growth and Aging

Aleksey D. Drozdov
Institute for Industrial Mathematics
Ben-Gurion University of the Negev
Be'ersheba, Israel
Contents

1 Kinematics of Continua 1
 1.1 Basic Definitions and Formulas 1
 1.1.1 Description of Motion 1
 1.1.2 Tangent Vectors 3
 1.1.3 The Nabla Operator 5
 1.1.4 Deformation Gradient 6
 1.1.5 Deformation Tensors and Strain Tensors 7
 1.1.6 Stretch Tensors 10
 1.1.7 Relative Deformation Tensors 11
 1.1.8 Rigid Motion 12
 1.1.9 Generalized Strain Tensors 13
 1.1.10 Volume Deformation 14
 1.1.11 Deformation of the Surface Element 15
 1.1.12 Objective Tensors 16
 1.1.13 Velocity Vector and Its Gradient 18
 1.1.14 Corotational Derivatives 20
 1.1.15 The Rivlin–Ericksen tensors 22
 Bibliography 23

2 Constitutive Models in Linear Viscoelasticity 25
 2.1 Differential Constitutive Models 25
 2.1.1 Differential Constitutive Models 26
 2.1.2 Fractional Differential Models 28
 2.2 Integral Constitutive Models 34
 2.2.1 Boltzmann’s Superposition Principle 35
 2.2.2 Connections Between Creep and Relaxation Measures 39
 2.2.3 A Model of Adaptive Links 41
 2.2.4 Spectral Presentation of the Function $X(t, \tau)$ 44
 2.2.5 Three-Dimensional Loading 48
 2.3 Creep and Relaxation Kernels 54
 2.3.1 Creep and Relaxation Kernels for Nonaging Media 54
 2.3.2 Creep and Relaxation Kernels for Aging Media 59
 2.3.3 Properties of Creep and Relaxation Measures 66
2.4 Thermodynamic Potentials and Variational Principles in Linear Viscoelasticity 71
2.4.1 Thermodynamic Potentials of Aging Viscoelastic Media 72
2.4.2 Variational Principles in Viscoelasticity 73
2.4.3 Gibbs' Principle and the Second Law of Thermodynamics 77
2.4.4 Thermodynamic Inequalities in Linear Viscoelasticity 79
2.5 A Model of Adaptive Links for Aging Viscoelastic Media 80
2.5.1 A Model of Adaptive Links 81
2.5.2 Validation of the Model 89
2.5.3 Prediction of Stress–Strain Curves for Time-Varying Loads 93

Bibliography 97

3 Nonlinear Constitutive Models with Small Strains 107
3.1 Nonlinear Differential Models 107
3.2 Nonlinear Integral Models 117
3.2.1 Uniaxial Loading 117
3.2.2 Three-Dimensional Loading 126
3.3 A Model for Crosslinked Polymers 130
3.3.1 A Model of Adaptive Links 131
3.3.2 Determination of Adjustable Parameters 136
3.3.3 Constitutive Equations for Three-Dimensional Loading 140
3.3.4 Correspondence Principles in Nonlinear Viscoelasticity 143
3.4 A Model for Non-Crosslinked Polymers 145
3.4.1 A Model of Adaptive Links 146
3.4.2 A Generalized Model of Adaptive Links 149
3.4.3 Validation of the Model 153

Bibliography 161

4 Nonlinear Constitutive Models with Finite Strains 171
4.1 Differential Constitutive Models 171
4.1.1 The Rivlin–Ericksen Model 172
4.1.2 The Kelvin–Voigt Model 173
4.1.3 The Maxwell Model 174
4.1.4 The Standard Viscoelastic Solid 176
4.2 Fractional Differential Models 177
4.2.1 Fractional Differential Operators with Finite Strains 178
4.2.2 Fractional Differential Models 180
4.2.3 Uniaxial Extension of an Incompressible Bar 182
4.2.4 Radial Deformation of a Spherical Shell 188
4.2.5 Uniaxial Extension of a Compressible Bar 195
4.2.6 Simple Shear of a Compressible Medium 198
4.3 Integral Constitutive Models 203
4.3.1 Linear Constitutive Equations 203
4.3.2 Constitutive Equations in the Form of Taylor Series 205
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.3</td>
<td>BKZ-Type Constitutive Equations</td>
<td>206</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Semilinear Constitutive Equations</td>
<td>210</td>
</tr>
<tr>
<td>4.4</td>
<td>A Model of Adaptive Links</td>
<td>212</td>
</tr>
<tr>
<td>4.4.1</td>
<td>A Model of Adaptive Links</td>
<td>212</td>
</tr>
<tr>
<td>4.4.2</td>
<td>The Lagrange Variational Principle</td>
<td>213</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Thermodynamic Stability of a Viscoelastic Medium</td>
<td>219</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Constitutive Equations for Incompressible Media</td>
<td>221</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Extension of a Viscoelastic Bar</td>
<td>223</td>
</tr>
<tr>
<td>4.5</td>
<td>A Constitutive Model in Finite Viscoelasticity</td>
<td>226</td>
</tr>
<tr>
<td>4.5.1</td>
<td>A Model of Adaptive Links</td>
<td>227</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Uniaxial Extension of a Viscoelastic Bar</td>
<td>231</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Biaxial Extension of a Viscoelastic Sheet</td>
<td>236</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Torsion of a Viscoelastic Cylinder</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Constitutive Relations for Thermoviscoelastic Media</td>
<td>262</td>
</tr>
<tr>
<td>5.1</td>
<td>Constitutive Models in Thermoviscoelasticity</td>
<td>262</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Thermorheologically Simple Media</td>
<td>262</td>
</tr>
<tr>
<td>5.1.2</td>
<td>The Proportionality Hypothesis</td>
<td>270</td>
</tr>
<tr>
<td>5.1.3</td>
<td>The McCrum Model</td>
<td>272</td>
</tr>
<tr>
<td>5.2</td>
<td>A Model of Adaptive Links in Thermoviscoelasticity</td>
<td>275</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Governing Equations</td>
<td>275</td>
</tr>
<tr>
<td>5.2.2</td>
<td>A Refined Model of Adaptive Links</td>
<td>284</td>
</tr>
<tr>
<td>5.3</td>
<td>Constitutive Models for the Nonisothermal Behavior</td>
<td>294</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Constitutive Equations for Isothermal Loading</td>
<td>297</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Constitutive Equations for Nonisothermal Loading</td>
<td>302</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Three-Dimensional Loading</td>
<td>306</td>
</tr>
<tr>
<td>5.3.4</td>
<td>The Standard Thermoviscoelastic Solid</td>
<td>307</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Cooling of a Cylindrical Pressure Vessel</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>328</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Accretion of Aging Viscoelastic Media with Finite Strains</td>
<td>337</td>
</tr>
<tr>
<td>6.1</td>
<td>Continuous Accretion of Aging Viscoelastic Media</td>
<td>337</td>
</tr>
<tr>
<td>6.1.1</td>
<td>A Model for Continuous Accretion</td>
<td>338</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Continuous Accretion of a Viscoelastic Cylinder</td>
<td>347</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Continuous Accretion of an Elastoplastic Bar</td>
<td>353</td>
</tr>
<tr>
<td>6.2</td>
<td>Winding of a Cylindrical Pressure Vessel</td>
<td>371</td>
</tr>
<tr>
<td>6.2.1</td>
<td>The Lame Problem for an Accreted Cylinder</td>
<td>375</td>
</tr>
<tr>
<td>6.3</td>
<td>Winding of a Composite Cylinder with Account for Resin Flow</td>
<td>393</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Kinematics of Deformation</td>
<td>394</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Governing Equations</td>
<td>398</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Accretion on a Rigid Mandrel</td>
<td>404</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Accretion with Small Strains</td>
<td>406</td>
</tr>
</tbody>
</table>
6.4 Volumetric Growth of a Viscoelastic Tissue
6.4.1 A Brief Historical Survey
6.4.2 Constitutive Equations
6.4.3 Compression of a Growing Bar
6.4.4 The Lame Problem for a Growing Cylinder
Bibliography

7 Accretion of Viscoelastic Media with Small Strains
7.1 Accretion of a Viscoelastic Conic Pipe
7.1.1 Formulation of the Problem
7.1.2 Kinematics of Accretion
7.1.3 Constitutive Equations
7.1.4 Governing Equations (Model 1)
7.1.5 Governing Equations (Model 2)
7.1.6 Numerical Analysis
7.2 Accretion of a Viscoelastic Spherical Dome
7.2.1 Formulation of the Problem
7.2.2 Governing Equations
7.2.3 Determination of Preload
7.2.4 Displacements in an Accreted Dome
7.2.5 Numerical Analysis
7.3 Debonding of Accreted Viscoelastic Beams
7.3.1 Accretion of a Two-Layered Beam
7.3.2 Accretion of an Elastic Beam on a Nonlinear Winkler Foundation
7.4 Torsion of an Accreted Elastoplastic Cylinder
7.4.1 Formulation of the Problem
7.4.2 Stresses and Strains in a Growing Cylinder
7.4.3 Accretion of an Elastic Cylinder
7.4.4 An Elastoplastic Cylinder with One Plastic Region
7.4.5 An Elastoplastic Cylinder with Two Plastic Regions
Bibliography

8 Optimization Problems for Growing Viscoelastic Media
8.1 An Optimal Rate of Accretion for Viscoelastic Solids
8.1.1 Torsion of an Accreted Viscoelastic Cylinder With Small Strains
8.1.2 Extension of an Accreted Elastic Bar with Finite Strains
8.2 Optimal Accretion of an Elastic Column
8.2.1 Formulation of the Problem and Governing Equations
8.2.2 Optimal Regime of Loading
8.2.3 Optimal Regime of Accretion
8.3 Preload Optimization for a Wound Cylindrical Pressure Vessel
8.3.1 Formulation of the Problem and Governing Equations