Wire Bonding in Microelectronics

Materials, Processes, Reliability, and Yield

George G. Harman

Second Edition

McGraw-Hill

New York San Francisco Washington, D.C. Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto
Preface xi
Acknowledgments xiv

Chapter 1. Technical Introduction to the Second Edition 1
 1.1 Wedge- and Ball-Bonding Machine Operations 2
 1.2 How to Approach Bonding Problems 6
 1.2.1 Which materials can be ultrasonically bonded? 6
 1.2.2 Assessing the bondability and reliability of proposed new bond systems 8
 1.2.3 Some unusual uses of wire bonds 10

Chapter 2. Ultrasonic Bonding Systems and Technologies (Including Ultrasonic Wire Bonding Mechanism) 11
 2.1 Introduction 11
 2.2 Ultrasonic Transducer and Tool Vibration Modes 11
 2.3 How Ultrasonic Bonds Are Made 18
 2.4 Bonding with High (er) Frequency Ultrasonic Energy 23
 2.5 In-Process (Real-Time) Bond Monitoring 26
 2.6 Wire-Bonding Technologies 27
 2.6.1 Thermocompression bonding 27
 2.6.2 Ultrasonic wedge bonding (small- and large-diameter wires) 28
 2.6.3 Thermosonic Ball and Wedge Bonding 29
 2.6.4 Choosing a wire-bonding technology 30
 2.7 Variations of Fine Wire-Bonding Technology 30
 2.7.1 Ribbon wire bonding 31
 2.7.2 Parallel gap and tweezer welding 33
 2.8 Major Chip Interconnection Alternatives to Wire Bonding (Flip Chip and TAB); Limits of Wire Bonding 35
 2.9 Flip Chip 35
 2.9.1 TAB 36
 2.9.2 Wire-bonding technology: a comparison 37
Chapter 3. Some Aspects of Bonding Wire Characteristics that Can Affect Bonding, Reliability, and Testing

3.1 Introduction
3.2 Stress-Strain Characteristics of Bonding Wires
3.3 Shelf-Life Aging of Bonding Wires
3.4 General Discussion of Gold Bonding Wire
3.5 Aluminum Wire for Ultrasonic Wedge Bonding
3.6 Wire and Metallization Hardness
3.7 Effect of EFO Polarity on Gold Wire and Its Metallurgy
3.8 Metallurgical Fatigue of Bonding Wires
3.9 Conductor Burnout
 3.9.1 Bonding wires
 3.9.2 Maximum allowable current for PCB and MCM conductors
Appendix WM-1: A Listing of Useful ASTM Standards and Specifications on Bonding Wire and Bond Testing

Chapter 4. Wire Bond Testing

4.1 Introduction
4.2 The Destructive Bond Pull Test
 4.2.1 Variables of the bond pull test
 4.2.2 Failure predictions that are based on pull test data
 4.2.3 Effect of metallurgy and bonding processes on the bond pull force
 4.2.4 Effect of wire elongation on bond-pull force (large-diameter Al, and Au wire used in ball bonding)
4.3 Nondestructive Pull Test
 4.3.1 Introduction
 4.3.2 Metallurgical and statistical interpretation of NDP test
 4.3.3 Assessment of any NDP test-induced metallurgical defects
 4.3.4 Limitations of the NDP test
 4.3.5 The current status of the NDPT (1996) for military and space applications
4.4. Ball-Bond Shear Test
 4.4.1 Introduction
 4.4.2 Apparatus
 4.4.3 A manual shear probe as an aid in setting up a ball bonder
 4.4.4 Interferences to making accurate ball-shear test measurements
 4.4.5 Ball-shear force versus bonded area
 4.4.6 Effect of gold-aluminum intermetallics on the shear force
 4.4.7 Pluck test
 4.4.8 Comparison of the ball-shear and bond-pull tests
 4.4.9 Applications of the ball-shear test
 4.4.10 Shear test for wedge bonds
 4.4.11 Ball-shear test standardization
4.5 Evaluating Both the Ball and the Wedge Bond on a Single Wire
4.6 Thermal Stress Test for Al-Au Wire Bond Reliability
4.7 Future Issues in Wire Bond Testing
4.8 Appendix TA-1
Chapter 5. Gold-Aluminum Intermetallic Compounds and Other Metallic Interface Reactions Encountered in Wire Bonding

5.1 Gold-Aluminum Intermetallic Compound Formation and Classical Wire Bond Failures
5.1.1 Introduction
5.1.2 Intermetallic compound formation
5.1.3 The classical Au-Al compound failure modes
5.1.4 Reversing metallurgical interfaces
5.1.5 The effect of diffusion inhibitors and barriers

5.2 Impurity-Accelerated Au-Al Bond Failures
5.2.1 The effect of halogens on the Au-Al bond system
5.2.2 Recommendations for removing or avoiding halogen contamination
5.2.3 Nonhalogen epoxy outgassing induced bond failures

5.3 Non-gold-aluminum Bond Interfaces
5.3.1 Aluminum-copper wire bond system
5.3.2 Aluminum metallization containing copper
5.3.3 Copper-gold wire bond system
5.3.4 Palladium-Au and -Al bonding system (used for lead frames)
5.3.5 The silver-aluminum wire bond system
5.3.6 Aluminum-nickel wire bond system
5.3.7 Au-Au, Al-Al, Au-Ag, and less-used monometallic bonding systems

Appendix IA-1: Rapid Bond Failure in Poorly Welded Au-Al Bonds
Appendix IA-2: Various Bond-Related Corrosion Reactions

Chapter 6. Bond Failures Resulting from Gold-Plating Impurities and Conditions

6.1 Introduction
6.2 Specific Plating Impurities
6.3 Hydrogen Gas in Plated Films
6.3.1 Hydrogen-induced package problems
6.3.2 Failure symptoms that appear similar to gas entrapments: resistance drift

6.4 Failures from Metallic Impurities in or on Gold Films That Are Not an Intentional Part of Plating Baths
6.4.1 Introduction
6.4.2 Nickel
6.4.3 Copper
6.4.4 Chromium
6.4.5 Titanium
6.4.6 Tin

6.5 Gold-Plating Standards
6.5.1 Recommendations for reliable gold-plated films
6.6 Electroless Autocatalytic Gold
6.7 Nongold Platings Used in Electronics Packaging

Chapter 7. Cleaning to Improve Bondability and Reliability

7.1 Introduction
7.1.1 Molecular cleaning methods to enhance bondability and reliability
Chapter 8. Mechanical Problems in Wire Bonding 203

8.1 Cratering 203
8.1.1 Introduction 203
8.1.2 Bonding machine characteristics and setup parameters 207
8.1.3 Bonding force 208
8.1.4 Tool wire-pad impact force 209
8.1.5 Causes of cratering—materials 210
8.1.6 Intermetallics 213
8.1.7 Silicon nodule-induced cratering 215
8.1.8 Cratering over polysilicon 217
8.1.9 Gallium arsenide cratering 219
8.2 Cracks in the Heels of Ultrasonic Wedge Bonds 223
8.3 The Effect of Acceleration, Vibrations, and Shock 226
8.3.1 Centrifuge effects on wire bonds 226
8.3.2 The effect of ultrasonic cleaning on wire bonds 228
8.3.3 The effect of shock and vibration tests on wire bonds 231
8.4 Effects of Power and Temperature Cycling of Wire Bonds 231
Appendix M-1: Fracture Toughness Defined 236

Chapter 9. High-Yield and Fine-Pitch Wire Bonding 241

9.1 Introduction 241
9.2 The Background Necessary to Achieve High-Yield Bonding 242
9.3 The Requirements for High-Yield Bonding 243
9.3.1 Clean, bondable metallization 243
9.3.2 The bonding machine and its control 247
9.4 Reliability for Small Numbers of Bonds (Small Sample Statistics) 248
9.5 Package-Related Bond-Yield Issues 250
9.6 Possible 6σ Yield Enhancements and Problems that Need Further Study 251
9.7 Other Conclusions that May Affect Device Yield 253
9.7.1 Wire sweep 253
9.7.2 Wire looping 254
9.8 Fine-Pitch Ball and Wedge Bonding 255
9.8.1 Introduction 255
9.8.2 Fine-pitch ball and wedge bonding 255
9.9 The Problems of Fine-Pitch Bonding 257
9.10 Conclusions 259
9.11 Acknowledgments 260
Chapter 10. Wire Bonding to Multichip Modules and Other Soft Substrates 263

10.1 Introduction 263
10.2 Bonding to MCM-D Substrates 264
10.3 Bonding to MCM-L Substrates 266
10.4 The Effect of the Substrate's Material Properties on Wire Bonding 269
10.5 Bonding Machine Considerations 274
10.6 Additional Considerations When Using Wire Bonds in MCMs Running at High Clock Rates 275
 10.6.1 Inductance of wire bonds 275
 10.6.2 Skin-effect in typical MCM conductor metal structures 276
10.7 Conclusions 278
10.8 Acknowledgments 278

Glossary 281
Index 285