Introduction to Scientific Computing

Brigitte Lucquin and Olivier Pironneau
Université Pierre et Marie Curie.
Paris, France

translated by

Michel Kern
INRIA
Rocquencourt, France
Contents

Foreword ix

Introduction xi

1 Some Partial Differential Equations 1
 1.1 Membranes 1
 1.2 Electrostatic 3
 1.3 Thermal Conduction 4
 1.4 Acoustics 9
 1.5 Irrotational Flow 10
 1.6 Convection 13
 1.7 Navier-Stokes Equations 17
 1.8 Examples with Systems 18
 1.9 An Example with Complex Numbers 22
 1.10 Classification of the Equations 24

PART A
PROGRAMMING THE MODEL PROBLEM BY A FINITE ELEMENT METHOD

2 Introduction to the Finite Element Method; Energy Minimisation 27
 2.1 Statement of the Problem 27
 2.2 Transformation of the Problem 31
 2.3 Approximation by the Galerkin Method 34
 2.4 First order Finite Elements: Triangulation, Interpolation, Quadrature Formulæ 38
 2.5 Programming the Method 47
 2.6 Efficiency of the Method 66
3 Finite Element Method: Variational Formulation and Direct Methods

3.1 Statement of the Problem 87
3.2 Solving the Discrete Variational Formulation by Band Storage of the Matrix 89
3.3 Numbering of Edges and Neighbouring Points 103
3.4 Compressed Sparse Row Storage 112
3.5 Efficiency of the Method 123
3.A Appendix: The Fortran Program for Solving the Laplacian with Dirichlet Boundary Conditions by Variational Formulation and Choleski Factorisation of the Linear System Matrix Stored in Band Format 123
3.B Appendix: The Fortran Program for Solving the Laplacian with Dirichlet Boundary Conditions by Variational Formulation and Choleski Factorisation of the Linear System Matrix, stored in CSR format 128

4 Finite Element Method: Optimisation of the Method

4.1 Preconditioned Conjugate Gradient 139
4.2 Programming the Method 148
4.3 Application to the Laplace Equation 152
4.4 Automatic Mesh Refinement 153
4.5 Delaunay Triangulation 159
4.A Appendix: Proof of Lemma 4.1 and Propositions 4.3 and 4.6 162
4.B Appendix: The Fortran Program for Solving the Laplacian and Dirichlet Boundary Conditions by a Variational Formulation and Resolution of the Linear Systems by Conjugate Gradient Preconditioned by the Incomplete Choleski Factorisation of the System Matrix 164

PART B GENERAL ELLIPTIC PROBLEMS AND EVOLUTION PROBLEMS

5 Finite Element Method for General Elliptic Problems

5.1 Neumann or Robin Boundary Conditions 171
5.2 General Symmetric and Linear Elliptic Equations 179
5.3 Second Order Finite Elements 190
5.4 Second Order Systems 199
5.A Appendix: The Fortran Program for the Solution of a Partial Differential Equation with Very General Boundary Condition by Conjugate Gradient Preconditioned by the Diagonal 201

6 Non-symmetric or Non-linear Partial Differential Equations

6.1 Second Order Non-symmetric Problems 215
6.2 The GMRES algorithm 219
6.3 One Example of a Non-linear Problem 229
6.A Appendix: The Fortran Subroutine for Solving a Linear System with an Invertible, but not Necessarily Symmetric Matrix A, by the Linear GMRES(m) Algorithm 234
6.B Appendix: The C Program for Solving a Linear Non-symmetric PDE by Gauss factorisation of the Linear System 239
7 Evolution Problems: Finite Differences in Time
7.1 The Finite Difference Method 249
7.2 Finite Difference Schemes for Linear Evolution Problems 258
7.3 The Heat Equation 262
7.4 The Convection Equation 287
7.5 The Convection-Diffusion Equation 292
7.6 The Wave Equation 295
7.7 Finite Differences in Time and Finite Elements in Space 298
7.8 Finite Differences in Time and Finite Volumes in Space 300

PART C COMPLEMENTS ON NUMERICAL METHODS

8 Integral Methods for the Laplacian
8.1 Preliminaries 309
8.2 Solution of the Dirichlet Problem by a Single Layer Potential 317
8.3 Other Problems 326

9 Some Algorithms for Parallel Computing
9.1 Architectures and Performances 333
9.2 Parallelism 334
9.3 Subdomain Parallelisation 336
9.4 The Schur Complement Method 342
9.5 A Lagrangian Method 346
9.6 Mortar Elements 347
9.7 Perspectives 351
9.A Appendix: Condition Number of the Schur Matrix 351

Bibliography 355

Index 359