Dmitrii Zubarev
Vladimir Morozov
Gerd Röpke

Statistical Mechanics of Nonequilibrium Processes
Volume 2: Relaxation and Hydrodynamic Processes

Akademie Verlag
Contents

Introduction .. 9
Frequently used formulae 18
Errata to Volume 1 .. 20

5 Linear irreversible processes 21
 5.1 Linear response to mechanical perturbations 22
 5.1.1 General formalism 22
 5.1.2 Equilibrium correlation functions and retarded Green’s functions 28
 5.1.3 The response to stationary perturbations 32
 5.1.4 Kubo’s approach to linear response theory 33
 5.1.5 Isolated and isothermal susceptibility 36
 5.1.6 Magnetic susceptibility 40
 5.1.7 Electrical conductivity 42
 5.2 Properties of susceptibilities and kinetic coefficients .. 45
 5.2.1 The spectral density 46
 5.2.2 Symmetry relations 47
 5.2.3 Onsager’s reciprocity relations 52
 5.2.4 Dispersion relations 54
 5.2.5 Sum rules 55
 5.2.6 Fluctuation-dissipation theorems 57
 5.3 The memory function formalism 59
 5.3.1 Linear evolution equations for observables 60
 5.3.2 Macroscopic dynamics of magnetic systems 65
 5.3.3 Connection between memory functions and correlation functions 68
 5.3.4 Relaxation time and the “plateau problem” 71
 5.4 Linear transport processes 75
 5.4.1 Linear kinetic equations 75
 5.4.2 Linear hydrodynamic equations 79
 5.4.3 Diffusion equation 82
Appendices to Chapter 5 85
 5A Variational principle in linear response theory .. 85
6 Nonequilibrium correlations and Green's functions

6.1 Nonequilibrium thermodynamic correlations
 6.1.1 Perturbation expansion of nonequilibrium equations of state
 6.1.2 Nonequilibrium thermodynamic Green's functions
 6.1.3 Perturbation expansion of thermodynamic Green's functions
 6.1.4 Thermodynamic Green's functions for Fermi and Bose systems
 6.1.5 Nonequilibrium correlations in an electron gas

6.2 Correlations in quasi-equilibrium states
 6.2.1 Thermodynamic Green's functions in quasi-equilibrium
 6.2.2 Generalized susceptibility in the Green's function formalism
 6.2.3 The dielectric function for a charged particle system
 6.2.4 Kinetic coefficients in the Green's function formalism
 6.2.5 The electrical conductivity of high-temperature plasmas

6.3 Nonequilibrium real-time Green's functions
 6.3.1 The definition of real-time Green's functions
 6.3.2 Equations of motion and the Dyson equation
 6.3.3 The generalized kinetic equation
 6.3.4 The quasiparticle approximation
 6.3.5 Boundary conditions for the real-time Green's functions
 6.3.6 Inclusion of thermodynamic correlations

Appendices to Chapter 5

6A Evaluation of sums over discrete frequencies
6B Approximate dielectric function
6C The gradient expansion in the generalized kinetic equation

Problems to Chapter 6
9 Hydrodynamic fluctuations

9.1 Time evolution of large-scale fluctuations
9.1.1 Distribution function of hydrodynamic variables
9.1.2 The generalized Fokker-Planck equation
9.1.3 The gradient expansion in the Fokker-Planck equation
9.1.4 Functional form of the Fokker-Planck equation
9.1.5 The entropy functional for hydrodynamic fluctuations

9.2 Fluctuations in a one-component fluid
9.2.1 Thermodynamics of fluctuations
9.2.2 The drift terms and the bare kinetic coefficients
9.2.3 The Langevin formalism in fluctuating hydrodynamics

9.3 Hydrodynamic fluctuations in nonequilibrium steady states
9.3.1 Time correlations of the nonequilibrium fluctuations
9.3.2 The linearized Langevin equations for a simple fluid
9.3.3 Density fluctuations in steady states: sound frequencies
9.3.4 Density fluctuations in steady states: low frequencies

9.4 Statistical mechanics of turbulence
9.4.1 Statistical description of turbulent flows in fluids
9.4.2 The Fokker-Planck equation for turbulent flows
9.4.3 Separation of variables in the Fokker-Planck equation
9.4.4 The Reynolds equations
9.4.5 The entropy and the free energy of turbulent flow
9.4.6 Normal solutions of the Fokker-Planck equation

Appendices to Chapter 9
9A The projection operator in fluctuating hydrodynamics
9B The equilibrium solution of the Fokker-Planck equation
9C Derivation of the Fokker-Planck equation from stochastic hydrodynamic equations

Problems to Chapter 9