CONTENTS

A more detailed contents list is given at the beginning of each chapter.

Preface v
List of Contributors vii

Chapter 1 (J.L. Duncan and S.M. Panton)
Introduction to sheet metal forming 1

Abstract 1
1.1. Introduction 2
1.2. Introduction to plastic flow theory 2
1.3. Forming characteristics of sheet metals 6
1.4. Forming limits for sheet metal 12
1.5. Industrial sheet metal forming 15
1.6. Bending and spring-back 19
1.7. Superplasticity 23
References 25

Chapter 2 (B. Tomas Åström)
Thermoplastic composite sheet forming: materials and manufacturing techniques 27

Abstract 27
2.1. Introduction 28
2.2. Constituents 29
2.3. Properties 48
2.4. Manufacturing techniques 60
Acknowledgement 72
References 72

xi
Chapter 3 (B.L. Koziey, M.O. Ghafur, J. Vlachopoulos and F.A. Mirza)

Computer simulation of thermoforming 75

Abstract 75
3.1. Introduction 76
3.2. Sheet production 77
3.3. Thermoforming simulation 78
3.4. Concluding remarks 88
References 88

Chapter 4 (K. Friedrich, M. Hou and J. Krebs)

Thermoforming of continuous fibre/thermoplastic composite sheets 91

Abstract 92
4.1. Introduction 92
4.2. Experimental details and procedures 96
4.3. 2-D stamp forming 100
4.4. 3-D stamp forming 137
4.5. 3-D diaphragm forming of GF/PP laminates 146
4.6. Summary 159
Acknowledgements 160
References 160

Chapter 5 (A.M. Murtagh and P.J. Mallon)

Characterisation of shearing and frictional behaviour during sheet forming 163

Abstract 163
5.1. Introduction 164
5.2. Transverse fibre flow 170
5.3. Intra-ply shear 173
5.4. Inter-ply slip 177
5.5. Friction during thermoforming 197
References 214

Chapter 6 (T.A. Martin, G.R. Christie and D. Bhattacharyya)

Grid strain analysis and its application in composite sheet forming 217

Abstract 217
6.1. Introduction 218
6.2. Large strain analysis 218
6.3. Method of least squares fitting 224
6.4. Forming a composite spherical dome 226
6.5. Forming a composite blister fairing 230
6.6. Draping theory of textile fabrics 234
6.7. Diagnostic applications 238
6.8. Concluding remarks 241
References 244

Chapter 7 (C.M. Ó Brádaigh, G.B. McGuinness and S.P. McEntee)

Implicit finite element modelling of composites sheet forming processes 247

Abstract 248
7.1. Introduction 248
7.2. Modelling of composite sheets during forming 254
7.3. Numerical solutions — plane stress problems 258
7.4. Central indentation of a composite sheet — the shear-buckling problem 263
7.5. Experimental comparisons — diaphragm forming 286
7.6. Conclusions of plane stress analysis 303
7.7. Numerical solutions — plane deformation problems 305
7.8. Conclusions of plane deformation analysis 315
Acknowledgements 318
Nomenclature 318
References 319

Chapter 8 (S.G. Advani, T.S. Creasy and S.F. Shuler)

Rheology of long fiber-reinforced composites in sheet forming 323

Abstract 324
8.1. Introduction 324
8.2. Rheological properties 329
8.3. Rheological measurement techniques 348
8.4. Why the rheological properties are important and how to use them in sheet forming 356
8.5. Outlook 366
References 367

Chapter 9 (T.A. Martin, S.J. Mander, R.J. Dykes and D. Bhattacharyya)

Bending of continuous fibre-reinforced thermoplastic sheets 371

Abstract 371
9.1. Introduction 372
9.2. Development of an idealised viscous bending model 374
9.3. Experimental procedures 380
Chapter 10 (J. Mayer and E. Wintermantel)

Thermoforming processes for knitted-fabric-reinforced thermoplastics: new manufacturing techniques for load-bearing, anisotropic implants 403

Abstract 404
10.1. General aspects of anisotropic biomaterials for load-bearing implants 404
10.2. Knitted-carbon-fiber-reinforced composite materials 405
10.3. Net-shape forming of knitted fabrics for load-transmitting implants shown for an ulnar osteosynthesis plate 419
10.4. Deep drawing of knitted-fiber-reinforced organo-sheets 428
10.5. Discussion 432
10.6. Summary and conclusions 435
Acknowledgements 435
References 436

Chapter 11 (H. Li and T. Gutowski)

The forming of thermoset composites 441

Abstract 441
11.1. Introduction to thermoset forming 442
11.2. Kinematics 446
11.3. Thermoset forming experiments and forming limit analysis 455
11.4. Concluding remarks 468
References 471

Chapter 12 (S.J. Mander, S.M. Panton, R.J. Dykes and D. Bhattacharyya)

Roll forming of sheet materials 473

Abstract 474
12.1. Introduction 474
12.2. Roll forming equipment and tooling 476
12.3. Conventional form roll design 483
12.4. Computer-aided design in roll forming 489
12.5. Deformation analysis of roll forming 491
Contents

12.6. Roll forming of thermoplastic material 498
12.7. Concluding remarks 512
Acknowledgements 513
References 513

Author Index 517
Subject Index 525