CONTENTS

Preface v

I FUNDAMENTAL TOOLS 1

1 Fundamentals 3

1.1 The Study of Data Structures 3

1.1.1 The STL 4

1.2 Language Fundamentals 4

1.2.1 Comments 5

1.2.2 Constants 5

1.2.3 Basic Data Types and Declaration Statements 6

1.2.4 Expressions and Assignment Statements 7

1.2.5 Input and Output 9

1.2.6 Pointer Values 9

1.2.7 Conditional Statements 10

1.2.8 Loops 11

1.2.9 Arrays 12

1.2.10 Structures 14

1.2.11 Functions 14

1.2.12 The Function main 16

1.2.13 Include Files 17

1.2.14 Binding Times 17

1.3 Chapter Summary 19

Further Reading 20

Study Questions & Exercises 20

2 Classes and Object-Oriented Programming 23

Chapter Overview 23

2.1 The Card Game WAR 24

2.2 The Class Card 24

2.3 The Class Deck 29

2.3.1 In-Line Function Definitions 34
5 Increasing Confidence in Correctness 87

Chapter Overview 87

5.1 Program Proofs 88
5.1.1 Invariants 88
5.1.2 Analyzing Loops 90
5.1.3 Asserting the Outcome is Correct 93
5.1.4 Progress Toward an Objective 94
5.1.5 Manipulating Unnamed Quantities 95
5.1.6 Function Calls 96
5.1.7 Recursive Algorithms 97

5.2 Program Testing 99

5.3 Chapter Summary 101

Further Reading 101

Study Questions & Exercises 101

II THE STANDARD CONTAINERS 105

6 The Standard Library Container Classes 107

Chapter Overview 107

6.1 Container Classes 108
6.1.1 Vectors 108
6.1.2 Strings 110
6.1.3 Lists 110
6.1.4 Double-Ended Queues 110
6.1.5 Stacks and Queues 111
6.1.6 Sets 112
6.1.7 Priority Queues 112
6.1.8 Maps (Dictionaries) 113

6.2 Selecting a Container 113

6.3 Iterators 115

Further Reading 119

6.4 Chapter Summary 119

Study Questions & Exercises 119

7 The string Data Type 121

Chapter Overview 121
7.1 The String Data Abstraction 122
 7.1.1 Include Files 122
 7.1.2 Primitive [C-style] Strings 122
7.2 Problem Solving with Strings 125
 7.2.1 Palindrome Testing 125
 7.2.2 Split a Line into Words 129
7.3 String Operations 130
 7.3.1 Declaring String Variables 131
 7.3.2 Character Access 131
 7.3.3 Extent of String 133
 7.3.4 Assignment and Append 133
 7.3.5 Iterators 134
 7.3.6 Insertion, Removal, and Replacement 134
 7.3.7 String Comparisons 134
 7.3.8 Searching Operations 134
 7.3.9 Useful Generic Algorithms 135
 7.3.10 Input/Output Routines 136
7.4 The Implementation of Strings 137
 7.4.1 Constructors, Assignment 139
 7.4.2 Destructor and Delete 141
 7.4.3 Resize Internal Buffer 142
 7.4.4 Computing Length 144
 7.4.5 Character Access 145
 7.4.6 Iterators 146
 7.4.7 Insertion, Removal, Replacement, and Append 147
 7.4.8 Comparison Operators 149
 7.4.9 Substring Matching 150
Further Reading 151
7.5 Chapter Summary 151
 Study Questions & Exercises 151

8 Vectors: A Random Access Data Structure 155
 Chapter Overview 155
8.1 The Vector Data Abstraction 156
8.2 Templates 156
 8.2.1 Function Templates 159
8.3 Problem Solving with Vectors 159
 8.3.1 Sieve of Erastosthenes 160
 8.3.2 Sorting 161
CONTENTS

8.3.3 Merge Sort 163
8.3.4 Silly Sentence Generation* 166
8.3.5 Matrices* 168

8.4 Summary of Vector Operations 169
 8.4.1 Declaration and Initialization of Vectors 169
 8.4.2 Subscripting a Vector 171
 8.4.3 Element Insertion 171
 8.4.4 Element Removal 172
 8.4.5 Extent and Size-Changing Operations 172
 8.4.6 Iterators 173
 8.4.7 Generic Algorithms 173
 8.4.8 Sorting and Sorted Vector Operations 175

8.5 The Implementation of Vector 176
 8.5.1 Constructors 176
 8.5.2 Reserve and Resize 179
 8.5.3 Access to Data Values 179

8.6 Implementing Generic Algorithms 180

8.7 Chapter Summary 182
 Study Questions & Exercises 182

9 Lists: A Dynamic Data Structure 185
 Chapter Overview 185

 9.1 The List Data Abstraction 186

 9.2 Summary of List Operations 187
 9.2.1 Insert Iterators 191

 9.3 Example Programs 193
 9.3.1 An Inventory System 193
 9.3.2 A Course Registration System 196

 9.4 An Example Implementation 203
 9.4.1 List Iterators 206

 9.5 Variation Through Inheritance 209
 9.5.1 Ordered Lists 209
 9.5.2 Self-Organizing Lists 211
 9.5.3 Private and Protected 212

 9.6 Chapter Summary 214
 Further Reading 214
 Study Questions & Exercises 215
10 Stacks and Queues 217
 Chapter Overview 217
10.1 The Stack and Queue Data Abstractions 217
10.2 Adaptors 220
10.3 Stacks 220
 10.3.1 Application: RPN Calculator 222
 10.3.2 Application: Conversion of Infix to Postfix* 225
10.4 Queues 228
 10.4.1 Example Program: Bank Teller Simulation 228
 10.4.2 Ring Buffer Queues 231
10.5 Chapter Summary 234
Further Reading 235
Study Questions & Exercises 235

11 Deques: Double-Ended Data Structures 237
 Chapter Overview 237
11.1 The Deque Abstraction 238
11.2 Application: Depth- and Breadth-First Search 239
11.3 Application: A Framework for Backtracking 248
 11.3.1 Specialization Using Inheritance 250
11.4 An Implementation 256
 11.4.1 Deque Iterators 259
11.5 Chapter Summary 261
Study Questions & Exercises 262

12 Sets and Multisets 263
 Chapter Overview 263
12.1 The Set Data Abstraction 263
12.2 Set Operations 264
12.3 Bit Vector Sets* 266
12.4 The set Data Type 272
 12.4.1 A Spelling Checker 272
 12.4.2 Spelling Correction 274
 12.4.3 Anagrams 275
12.5 Summary of Operations for Class set 276
12.5.1 Generic Functions for Set Operations 278
12.6 An Implementation of Class set 280
 12.6.1 Implementation of Generic Algorithms 288
12.7 Chapter Summary 290
 Further Reading 290
 Study Questions & Exercises 291

13 Trees: A Nonlinear Data Structure 293
 Chapter Overview 293
 13.1 Properties of Trees 294
 13.2 Binary Trees 298
 13.2.1 Vector Implementation 303
 13.2.2 Dynamic Memory Implementation 303
 13.2.3 Application: "Guess the Animal" Game 304
 13.3 Operator Precedence Parsing* 307
 13.4 Tree Traversals 311
 13.4.1 Postorder Tree Traversal Iterator 315
 13.4.2 Preorder Tree Traversal Iterator 317
 13.4.3 Inorder Tree Traversal Iterator 318
 13.4.4 Level-Order Tree Traversal Iterator 320
 13.5 Binary Tree Representation of General Trees 321
 13.6 Chapter Summary 323
 Study Questions & Exercises 323

14 Searching 327
 Chapter Overview 327
 14.1 Divide and Conquer 328
 14.1.1 Binary Search 329
 14.1.2 Application: Root Finding 331
 14.2 Ordered Vectors 332
 14.3 Balanced Binary Search Trees 336
 14.4 Application: Tree Sort 346
 14.5 Finding the Nth Largest 347
 14.5.1 Application: Quick Sort 352
 14.6 Chapter Summary 355
 Further Reading 356
15 Priority Queues 359
Chapter Overview 359
15.1 The Priority Queue Data Abstraction 360
15.2 Heaps 362
 15.2.1 Application: Heap Sort 366
15.3 Skew Heaps* 370
15.4 Application: Discrete Event-Driven Simulation 376
 15.4.1 A Framework for Simulations 378
15.5 Chapter Summary 383
Further Reading 383
Study Questions & Exercises 384

16 Maps and Multimaps 387
Chapter Overview 387
16.1 The map Data Abstraction 388
 16.1.1 Pairs 388
16.2 Example Programs 388
 16.2.1 A Telephone Directory 388
 16.2.2 Silly Sentence Generation Revisited 392
 16.2.3 A Concordance 396
16.3 Operations on Maps 398
 16.3.1 Include Files 398
 16.3.2 Creation and Initialization 399
 16.3.3 Type Definitions 400
 16.3.4 Insertion and Access 400
 16.3.5 Removal of Values 401
 16.3.6 Iterators 401
 16.3.7 Searching and Counting 401
16.4 An Example Implementation 402
16.5 Chapter Summary 404
Further Reading 405
Study Questions & Exercises 405
III OTHER CONTAINERS 407

17 Hash Tables 409
 Chapter Overview 409
 17.1 The Hash Table Abstraction 409
 17.2 Hash Functions 410
 17.3 Collision Resolution Using Buckets 413
 17.3.1 Asymptotic Analysis of Hash Table Operations 413
 17.4 Hash Table Sorting Algorithms 414
 17.4.1 Counting Sort 414
 17.4.2 Bucket Sorting 417
 17.4.3 Radix Sorting 418
 17.5 The hash_table Data Type 421
 17.6 Hash Functions 423
 17.7 Chapter Summary 425
 Further Reading 426
 Study Questions & Exercises 426

18 Matrices: Two-Dimensional Data Structures 429
 Chapter Overview 429
 18.1 The Matrix Data Abstraction 429
 18.1.1 C++ Matrices 430
 18.2 Matrices as Vectors of Vectors 433
 18.2.1 Combining Matrices and Vectors 435
 18.3 Sparse Matrices 436
 18.4 Non-Integer Index Values 439
 18.5 Chapter Summary 442
 Study Questions & Exercises 442

19 Graphs 445
 Chapter Overview 445
 19.1 The Graph Data Abstraction 445
 19.2 Adjacency Matrix Representation 447
 19.2.1 Warshall’s Algorithm 448
 19.3 Edge List Representation 451
CONTENTS

19.3.1 Reachability Using Depth-First Search 453
19.4 Weighted Adjacency Matrix 455
 19.4.1 Floyd's Algorithm 457
19.5 Sparse Matrix Representation 457
 19.5.1 Dijkstra's Algorithm 459
19.6 Finite Automata 463
19.7 Turing Machines* 467
19.8 Chapter Summary 471
 Further Reading 471
 Study Questions & Exercises 472

20 Files: External Collections 475
 Chapter Overview 475
 20.1 The File Data Abstraction 475
 20.2 Character Stream Operations 476
 20.2.1 Streams and Iterators 477
 20.3 Application: Lexical Analysis 479
 20.4 Application: File Merge Sort 481
 20.5 Binary Files 485
 20.5.1 Open Table Hashing 488
 20.5.2 Application: A Simple Database 493
 20.6 Chapter Summary 495
 Further Reading 495
 Study Questions & Exercises 495

IV APPENDICES 497

Appendix A Common Implementation Difficulties 499
 A.1 The Class bool 499
 A.2 Integrating the string Library and the Container Classes 500
 A.3 Optional Template Arguments 500
 A.4 Allocators 501
 A.5 Template Arguments on Member Functions 501
Appendix B Summary of Standard Container Operations 503

B.1 The Standard Containers 503
 B.1.1 String 503
 B.1.2 Vector 504
 B.1.3 List 505
 B.1.4 Stack 506
 B.1.5 Queue 506
 B.1.6 Deque 507
 B.1.7 Bit set 508
 B.1.8 Set 508
 B.1.9 Priority Queue 509
 B.1.10 Map 509

B.2 Generic Algorithms 510
 B.2.1 Initialization Algorithms 510
 B.2.2 Searching Operations 511
 B.2.3 In-Place Transformations 512
 B.2.4 Removal Algorithms 513
 B.2.5 Scalar-Producing Algorithms 514
 B.2.6 Sequence-Generating Algorithms 515
 B.2.7 Sorting Algorithms 515
 B.2.8 Binary Search 516
 B.2.9 Set Operations 516
 B.2.10 Heap Operations 517
 B.2.11 Miscellaneous Algorithms 517

Appendix C Tables of Various Functions 519

Appendix D If C++ Is the Solution, Then What Is the Problem? 523

D.1 Class Definitions 524
D.2 Member Functions 524
D.3 Access Controls (Public, Private, and Protected) 525
D.4 References and Pointers 525
D.5 Reference Parameters 526
D.6 Constructors 526
D.7 Copy Constructor 527
D.8 Operators as Functions and Operators as Members 528
D.9 Conversion Operators 528
D.10 Automatic and Dynamic Allocation 529
D.11 Destructors 530
CONTENTS

D.12 Friends 530
D.13 Derived Classes: Inheritance 531
D.14 Templates 531
D.15 Polymorphism: Virtual Functions 531

Bibliography 533

Index 539