Introduction to Imaging Spectrometers

William L. Wolfe
Professor Emeritus, Optical Sciences Center, University of Arizona

Tutorial Texts in Optical Engineering
Volume TT25

Donald C. O'Shea, Series Editor
Georgia Institute of Technology

SPIE Optical Engineering Press
A Publication of SPIE—The International Society for Optical Engineering
Bellingham, Washington USA
• CONTENTS

Preface • xiii

1 • INTRODUCTION
1.1 The Scheme of This Text • 4
1.2 The Future • 5
1.3 References and Bibliography • 6

2 • OPTICS OVERVIEW
2.1 Photons, Waves, and Rays • 7
2.2 The Detection of Radiation • 7
2.3 Interference • 8
2.4 Wavefronts, Normals, Beams, and Rays • 8
2.5 Refractive Index • 9
2.6 The Laws of Reflection and Refraction • 9
2.7 Total Internal Reflection • 10
2.8 Diffraction • 11
2.9 Geometric Optics and Optical Design • 12
2.10 The Idealized Thin Lens • 12
2.11 The Lens Maker’s Equation • 12
2.12 Aberrations • 13
2.13 Bending the Lens • 15

3 • RADIOMETRY REVIEW
3.1 Definitions of Important Radiometric Quantities • 17
3.2 Radiative Transfer • 19
3.3 Solid Angle and Speed • 20
3.4 Stops and Pupils • 21

4 • SPECTROMETER SPECIFICATIONS
4.1 Spectral Variables • 23
4.2 Resolution • 23
4.3 Resolving Power • 24
11 • MICHELSON INTERFEROMETER SPECTROMETERS
11.1 Two-Beam Interference • 60
11.2 Interference in the Michelson Interferometer • 61
11.3 The Twyman-Green Interferometer • 62
11.4 The Fourier Transform Spectrometer • 62
11.5 Throughput and Sensitivity • 65

12 • AN IMAGING FOURIER TRANSFORM SPECTROMETER
12.1 Monochromatic Operation • 66
12.2 Field Operation • 68

13 • FABRY-PEROT INTERFEROMETER SPECTROMETERS
13.1 Description • 70
13.2 Spectral Transmission • 70
13.3 Resolving Power, Throughput, and Free Spectral Range • 71
13.4 The Fabry-Perot Imaging Spectrometer • 72

14 • A CHALLENGING APPLICATION
14.1 Requirements • 74
14.2 The (Up)Front-Filter Approach • 75
14.3 The Rear (FPA) Filter Approach • 76
14.4 The Multiple-Lens Filter Approach • 77
14.5 The Acousto-Optic Filter • 77
14.6 The Grating Approach • 79
14.7 The FTS Approach • 79
14.8 Sensitivity Calculations • 79

15 • A SATELLITE SPECTROMETER
15.1 Requirements • 84
15.2 Analysis • 86
15.3 Another Way to Calculate • 87

16 • A MARS ROVER EXPERIMENT
16.1 Requirements Definitions • 90
16.2 The Martian Environment • 91
16.3 Optical Properties of (Martian?) Minerals • 91
16.4 The Candidate Imaging Spectrometers • 95
 16.4.1 Candidates using linear arrays • 95
 16.4.2 Sensitivity • 96
 16.4.3 The filter "wheel" • 97
 16.4.4 The FTS system • 97
16.5 Two-Dimensional Array Systems • 98
16.6 Possible Improvements • 99
17 • SOME TRADE-OFFS
17.1 General Considerations • 103
17.2 Optical Efficiency • 103
17.3 Bandwidth • 103
17.4 Sensitivity • 104
17.5 Examples • 104

18 • OTHER EXAMPLES
18.1 The Westinghouse AOTF System • 108
18.2 HYDICE • 108
18.3 TRW Devices • 110

Appendix to Chapter 2 • OPTICS OPERATIONS
A2.1 Derivation of the Wave Equation from Maxwell’s Equations • 111
A2.2 Representation of Fields • 112
A2.3 The Poynting Vector • 113
A2.4 Derivation of Snell’s Law • 115
A2.5 Interference • 116
A2.6 Diffraction • 116
A2.7 The Thin Lens • 120
A2.8 Refraction at a Spherical Surface • 121
A2.9 The Aberrations • 123
A2.9.1 Spherical aberration • 123
A2.9.2 Comatic aberration • 124
A2.9.3 Astigmatism • 124
A2.9.4 Curvature of field • 125
A2.9.5 Distortion • 125
A2.9.6 Chromatic aberrations • 126
A2.10 Bending the Lens • 126

Appendix to Chapter 6 • DETECTORS
A6.1 The Signal • 128
A6.2 The Noise • 128
A6.3 The Noises • 129
A6.4 Expressions for the Limiting Specific Detectivities • 130

Appendix to Chapter 9 • PRISMS
A9.1 Throughput • 132
A9.2 Slit Sizes and Resolution • 133
A9.3 Deviation • 133
A9.4 Dispersion • 135
A9.5 Some Mounting Arrangements • 135
Appendix to Chapter 10 • GRATINGS
A10.1 The Grating Diffraction Pattern • 137
A10.2 The Grating Equation • 138
A10.3 Resolving Power • 138
A10.4 Free Spectral Range • 139
A10.5 Some Mounting Arrangements • 139

Appendix to Chapter 12 • FTS FOUNDATIONS
A12.1 Resolution • 141
A12.2 Resolving Power • 142
A12.3 Sensitivity • 142
A12.4 Apodization • 142

Bibliography • 144
Index • 147