Contents

Preface to the English Edition v

Preface to Second Edition vii

Preface to First Edition ix

Introduction, K. Lamotke 1

Part A. From the Natural Numbers, to the Complex Numbers, to the p-adics 7

Chapter 1. Natural Numbers, Integers, and Rational Numbers. K. Mainzer 9

§1. Historical 9
1. Egyptians and Babylonians. 2. Greece. 3. Indo-Arabic Arithmetical Practice. 4. Modern Times

§2. Natural Numbers 14
1. Definition of the Natural Numbers. 2. The Recursion Theorem and the Uniqueness of N. 3. Addition, Multiplication and Ordering of the Natural Numbers. 4. Peano’s Axioms

§3. The Integers 19
1. The Additive Group Z. 2. The Integral Domain Z.
3. The Order Relation in Z

§4. The Rational Numbers 22
1. Historical. 2. The Field Q. 3. The Ordering of Q

References 23

Chapter 2. Real Numbers. K. Mainzer 27

§1. Historical 27
1. Hippasus and the Pentagon. 2. Eudoxus and the Theory of Proportion. 3. Irrational Numbers in Modern Mathematics. 4. The Formulation of More Precise Definitions in the Nineteenth Century

§2. Dedekind Cuts 36
1. The Set R of Cuts. 2. The Order Relation in R.
4. Rational Parametrization of Properly Orthogonal 2 \times 2 Matrices.

§6. Polar Coordinates and nth Roots

Chapter 4. The Fundamental Theorem of Algebra.
R. Remmert

§1. On the History of the Fundamental Theorem
1. GIRARD (1595–1632) and DESCARTES (1596–1650).
10. Brief Biographical Notes on Carl Friedrich GAUSS

§2. Proof of the Fundamental Theorem Based on ARGAND

§3. Application of the Fundamental Theorem

Appendix. Proof of the Fundamental Theorem, after LAPLACE
1. Results Used. 2. Proof. 3. Historical Note

Chapter 5. What is π? R. Remmert

§1. On the History of π
1. Definition by Measuring a Circle. 2. Practical Approximations. 3. Systematic Approximation. 4. Analytical Formulae. 5. BALTZER's Definition. 6. LANDAU and His Contemporary Critics

§2. The Exponential Homomorphism $\exp: C \rightarrow C^\times$

§3. Classical Characterizations of π
1. Definitions of $\cos z$ and $\sin z$. 2. Addition Theorem.
3. The Number \(\pi \) and the Zeros of \(\cos z \) and \(\sin z \). 4. The Number \(\pi \) and the Periods of \(\exp z \), \(\cos z \) and \(\sin z \). 5. The Inequality \(\sin y > 0 \) for \(0 < y < \pi \) and the Equation \(e^{i\frac{\pi}{2}} = i \).
6. The Polar Coordinate Epimorphism \(p : \mathbb{R} \rightarrow S^1 \).
7. The Number \(\pi \) and the Circumference and Area of a Circle.

§4. Classical Formulae for \(\pi \)
1. LEIBNIZ'S Series for \(\pi \).
2. VIETA'S Product Formula for \(\pi \).
3. EULER'S Product for the Sine and WALLIS'S Product for \(\pi \).
4. EULER'S Series for \(\pi^2, \pi^4, \ldots \). 5. The WEIERSTRASS Definition of \(\pi \). 6. The Irrationality of \(\pi \) and Its Continued Fraction Expansion. 7. Transcendence of \(\pi \).

Chapter 6. The \(p \)-Adic Numbers. J. Neukirch

§1. Numbers as Functions

§2. The Arithmetic Significance of the \(p \)-Adic Numbers

§3. The Analytical Nature of \(p \)-Adic Numbers

§4. The \(p \)-Adic Numbers

References

Part B. Real Division Algebras

Introduction, M. Koecher, R. Remmert

Reperitory. Basic Concepts from the Theory of Algebras, M. Koecher, R. Remmert

Chapter 7. Hamilton's Quaternions. M. Koecher, R. Remmert

Introduction

§1. The Quaternion Algebra \(\mathbb{H} \)
1. The Algebra \(\mathbb{H} \) of the Quaternions. 2. The Matrix Algebra \(\mathcal{H} \) and the Isomorphism \(F: \mathbb{H} \rightarrow \mathcal{H} \). 3. The Imaginary Space of \(\mathbb{H} \). 4. Quaternion Product, Vector Product and Scalar Product. 5. Noncommutativity of \(\mathbb{H} \). The Center. 6. The Endomorphisms of the \(\mathbb{R} \)-Vector Space \(\mathbb{H} \). 7. Quaternion Multiplication and Vector Analysis. 8. The Fundamental Theorem of Algebra for Quaternions.

§2. The Algebra \(\mathbb{H} \) as a Euclidean Vector Space
1. Conjugation and the Linear Form \(\Re \). 2. Properties of
the Scalar Product. 3. The “Four Squares Theorem”.
4. Preservation of Length, and of the Conjugacy Relation Under Automorphisms. 5. The Group S^3 of Quaternions of Length 1. 6. The Special Unitary Group $SU(2)$ and the Isomorphism $S^3 \rightarrow SU(2)$.

§3. The Orthogonal Groups $O(3), O(4)$ and Quaternions
1. Orthogonal Groups. 2. The Group $O(\mathbb{H})$. CAYLEY’S Theorem. 3. The Group $O(\text{Im} \mathbb{H})$. HAMILTON’s Theorem. 4. The Epimorphisms $S^3 \rightarrow SO(3)$ and $S^3 \times S^3 \rightarrow SO(4)$. 5. Axis of Rotation and Angle of Rotation. 6. EULER’s Parametric Representation of $SO(3)$.

Chapter 8. The Isomorphism Theorems of FROBENIUS, HOPF and GELFAND–MAZUR. M. Koecher, R. Remmert

Introduction

§1. Hamiltonian Triples in Alternative Algebras

§2. FROBENIUS’S Theorem
1. FROBENIUS’S Lemma. 2. Examples of Quadratic Algebras. 3. Quaternions Lemma. 4. Theorem of FROBENIUS (1877)

§3. HOPF’S Theorem
1. Topologization of Real Algebras. 2. The Quadratic Mapping $A \rightarrow A, x \mapsto x^2$. HOPF’s Lemma. 3. HOPF’s Theorem. 4. The Original Proof by HOPF. 5. Description of All 2-Dimensional Algebras with Unit Element

§4. The GELFAND–MAZUR Theorem

Chapter 9. CAYLEY Numbers or Alternative Division Algebras. M. Koecher, R. Remmert

§1. Alternative Quadratic Algebras
1. Quadratic Algebras. 2. Theorem on the Bilinear Form. 3. Theorem on the Conjugation Mapping. 4. The Triple Product Identity. 5. The Euclidean Vector Space A and the Orthogonal Group $O(A)$

§2. Existence and Properties of Octonions
1. Construction of the Quadratic Algebra \mathcal{O} of Octonions.
2. The Imaginary Space, Linear Form, Bilinear Form, and Conjugation of \mathbb{O}. 3. \mathbb{O} as an Alternative Division Algebra. 4. The "Eight-Squares" Theorem. 5. The Equation $\mathbb{O} = \mathbb{H} \oplus \mathbb{H}$. 6. Multiplication Table for \mathbb{O}

§3. Uniqueness of the CAYLEY Algebra
1. Duplication Theorem. 2. Uniqueness of the CAYLEY Algebra (Zorn 1933). 3. Description of \mathbb{O} by ZORN's Vector Matrices

§1. Composition Algebras
1. Historical Remarks on the Theory of Composition. 2. Examples. 3. Composition Algebras with Unit Element. 4. Structure Theorem for Composition Algebras with Unit Element

§2. Mutation of Composition Algebras
1. Mutation of Algebras. 2. Mutation Theorem for Finite-Dimensional Composition Algebras. 3. HURWITZ's Theorem (1898)

§3. Vector-Product Algebras

Chapter 11. Division Algebras and Topology. F. Hirzebruch

§1. The Dimension of a Division Algebra Is a Power of 2
1. Odd Mappings and HOPF's Theorem. 2. Homology and Cohomology with Coefficients in F_2. 3. Proof of HOPF's Theorem. 4. Historical Remarks on Homology and Cohomology Theory. 5. STIEFEL's Characteristic Homology Classes

§2. The Dimension of a Division Algebra Is 1, 2, 4 or 8
1. The mod 2 Invariants $\alpha(f)$. 2. Parallelizability of Spheres and Division Algebras. 3. Vector Bundles. 4. WHITNEY's Characteristic Cohomology Classes. 5. The Ring of Vector Bundles. 6. Bott Periodicity. 7. Characteristic Classes of Direct Sums and Tensor Products. 8. End of the Proof. 9. Historical Remarks

§3. Additional Remarks
1. Definition of the HOPF Invariant. 2. The HOPF Construction. 3. ADAMS's Theorem on the HOPF Invariants. 4. Summary. 5. ADAMS's Theorem About Vector Fields on Spheres
Part C. Infinitesimals, Games, and Sets

Chapter 12. Nonstandard Analysis. A. Prestel

§1. Introduction

§2. The Nonstandard Number Domain \({}^*\mathbb{R} \)
 1. Construction of \({}^*\mathbb{R} \). 2. Properties of \({}^*\mathbb{R} \)

§3. Features Common to \(\mathbb{R} \) and \({}^*\mathbb{R} \)

§4. Differential and Integral Calculus
 1. Differentiation. 2. Integration

Epilogue

Chapter 13. Numbers and Games. H. Hermes

§1. Introduction
 1. The Traditional Construction of the Real Numbers.
 2. The CONWAY Method. 3. Synopsis

§2. CONWAY Games
 1. Discussion of the DEDEKIND Postulates. 2. CONWAY’s Modification of the DEDEKIND Postulates. 3. CONWAY Games

§3. Games
 1. The Concept of a Game. 2. Examples of Games. 3. An Induction Principle for Games

§4. On the Theory of Games
 1. Winning Strategies. 2. Positive and Negative Games.
 3. A Classification of Games

§5. A Partially Ordered Group of Equivalent Games
 1. The Negative of a Game. 2. The Sum of Two Games.
 5. Equality of Games

§6. Games and CONWAY Games
 1. The Fundamental Mappings. 2. Extending to CONWAY Games the Definitions of the Relations and Operations Defined for Games. 3. Examples

§7. CONWAY Numbers
 1. The CONWAY Postulates (C1) and (C2). 2. Elementary Properties of the Order Relation. 3. Examples

§8. The Field of CONWAY Numbers
 3. Properties of the Field of Numbers

References
H.-D. Ebbinghaus

Introduction

§1. Sets and Mathematical Objects
1. Individuals and More Complex Objects. 2. Set Theoretical Definitions of More Complex Objects.
3. Urelements as Sets

§2. Axiom Systems of Set Theory
1. The Russell Antinomy. 2. Zermelo’s and the Zermelo-Fraenkel Set Theory. 3. Some Consequences. 4. Set Theory with Classes

§3. Some Metamathematical Aspects
3. Independence Proofs

Epilogue
References

Name Index

Subject Index

Portraits of Famous Mathematicians