Contents

Preface to the second edition xi
Preface to the first edition xii

1 Thermodynamics and Phase Diagrams 1
1.1 Equilibrium 1
1.2 Single Component Systems 4
 1.2.1 Gibbs Free Energy as a Function of Temperature 4
 1.2.2 Pressure Effects 7
 1.2.3 The Driving Force for Solidification 10
1.3 Binary Solutions 11
 1.3.1 The Gibbs Free Energy of Binary Solutions 11
 1.3.2 Ideal Solutions 13
 1.3.3 Chemical Potential 16
 1.3.4 Regular Solutions 18
 1.3.5 Activity 21
 1.3.6 Real Solutions 23
 1.3.7 Ordered Phases 24
 1.3.8 Intermediate Phases 26
1.4 Equilibrium in Heterogeneous Systems 28
1.5 Binary Phase Diagrams 33
 1.5.1 A Simple Phase Diagram 33
 1.5.2 Systems with a Miscibility Gap 33
 1.5.3 Ordered Alloys 35
 1.5.4 Simple Eutectic Systems 36
 1.5.5 Phase Diagrams Containing Intermediate Phases 36
 1.5.6 The Gibbs Phase Rule 36
 1.5.7 The Effect of Temperature on Solid Solubility 41
 1.5.8 Equilibrium Vacancy Concentration 43
1.6 The Influence of Interfaces on Equilibrium 44
1.7 Ternary Equilibrium 49
1.8 Additional Thermodynamic Relationships for Binary Solutions 52
1.9 The Kinetics of Phase Transformations 55
References 56
Further Reading 56
Exercises 57
Contents

2 Diffusion 60
 2.1 Atomic Mechanisms of Diffusion 61
 2.2 Interstitial Diffusion 63
 2.2.1 Interstitial Diffusion as a Random Jump Process 63
 2.2.2 Effect of Temperature—Thermal Activation 66
 2.2.3 Steady-State Diffusion 69
 2.2.4 Nonsteady-State Diffusion 69
 2.2.5 Solutions to the Diffusion Equation 71
 Homogenization 71
 The Carburization of Steel 73
 2.3 Substitutional Diffusion 75
 2.3.1 Self-Diffusion 75
 2.3.2 Vacancy Diffusion 79
 2.3.3 Diffusion in Substitutional Alloys 82
 2.3.4 Diffusion in Dilute Substitutional Alloys 91
 2.4 Atomic Mobility 92
 2.5 Tracer Diffusion in Binary Alloys 94
 2.6 Diffusion in Ternary Alloys 96
 2.7 High-Diffusivity Paths 98
 2.7.1 Diffusion along Grain Boundaries and Free Surfaces 98
 2.7.2 Diffusion along Dislocations 102
 2.8 Diffusion in Multiphase Binary Systems 103
 References 106
 Further Reading 106
 Exercises 106

3 Crystal Interfaces and Microstructure 110
 3.1 Interfacial Free Energy 110
 3.2 Solid/Vapour Interfaces 112
 3.3 Boundaries in Single-Phase Solids 116
 3.3.1 Low-Angle and High-Angle Boundaries 116
 3.3.2 Special High-Angle Grain Boundaries 122
 3.3.3 Equilibrium in Polycrystalline Materials 124
 3.3.4 Thermally Activated Migration of Grain Boundaries 130
 3.3.5 The Kinetics of Grain Growth 139
 3.4 Interphase Interfaces in Solids 142
 3.4.1 Interface Coherence 143
 Fully Coherent Interfaces 143
 Semicoherent Interfaces 145
 Incoherent Interfaces 147
 Complex Semicoherent Interfaces 148
 3.4.2 Second-Phase Shape: Interfacial Energy Effects 149
 Fully Coherent Precipitates 149
 Partially Coherent Precipitates 151
 Incoherent Precipitates 152
 Precipitates on Grain Boundaries 153
3.4.3 Second-Phase Shape: Misfit Strain Effects
 Fully Coherent Precipitates
 Incoherent Inclusions
 Plate-Like Precipitates
3.4.4 Coherency Loss
3.4.5 Glissile Interfaces
3.4.6 Solid/Liquid Interfaces
3.5 Interface Migration
 3.5.1 Diffusion-Controlled and Interface-Controlled Growth

References
Further Reading
Exercises

4 Solidification
 4.1 Nucleation in Pure Metals
 4.1.1 Homogeneous Nucleation
 4.1.2 The Homogeneous Nucleation Rate
 4.1.3 Heterogeneous Nucleation
 4.1.4 Nucleation of Melting
 4.2 Growth of a Pure Solid
 4.2.1 Continuous Growth
 4.2.2 Lateral Growth
 Surface Nucleation
 Spiral Growth
 Growth from Twin Intersections
 4.2.3 Heat Flow and Interface Stability
 4.3 Alloy Solidification
 4.3.1 Solidification of Single-Phase Alloys
 Equilibrium Solidification
 No Diffusion in Solid, Perfect Mixing in Liquid
 No Diffusion in Solid, Diffusional Mixing in Liquid
 Cellular and Dendritic Solidification
 4.3.2 Eutectic Solidification
 Growth of Lamellar Eutectics
 4.3.3 Off-Eutectic Alloys
 4.3.4 Peritectic Solidification
 4.4 Solidification of Ingots and Castings
 4.4.1 Ingot Structure
 Chill Zone
 Columnar Zone
 Equiaxed Zone
 Shrinkage Effects
 4.4.2 Segregation in Ingots and Castings
 4.4.3 Continuous Casting
 Heat Flow in Welding and Continuous Casting
4.5 Solidification of Fusion Welds
 Influence of Welding Speed
 Geometry of Crystal Growth

4.6 Solidification during Quenching from the Melt

4.7 Case Studies of some Practical Castings and Welds
 4.7.1 Casting of Carbon and Low-Alloy Steels
 4.7.2 Casting of High-Speed Steels
 4.7.3 Stainless Steel Weld Metal

References
Further Reading
Exercises

5 Diffusional Transformations in Solids
 5.1 Homogeneous Nucleation in Solids
 5.2 Heterogeneous Nucleation
 Nucleation on Grain Boundaries
 Dislocations
 Excess Vacancies
 5.2.1 Rate of Heterogeneous Nucleation
 5.3 Precipitate Growth
 5.3.1 Growth behind Planar Incoherent Interfaces
 5.3.2 Diffusion-Controlled Lengthening of Plates or Needles
 5.3.3 Thickening of Plate-like Precipitates
 5.4 Overall Transformation Kinetics—TTT Diagrams
 5.5 Precipitation in Age-Hardening Alloys
 5.5.1 Precipitation in Aluminium–Copper Alloys
 GP Zones
 Transition Phases
 5.5.2 Precipitation in Aluminium–Silver Alloys
 5.5.3 Quenched-in Vacancies
 5.5.4 Age Hardening
 5.5.5 Spinodal Decomposition
 5.5.6 Particle Coarsening
 Low \(\gamma \)
 Low \(X_c \)
 Low \(D \)
 5.6 The Precipitation of Ferrite from Austenite
 5.7 Cellular Precipitation
 5.8 Eutectoid Transformations
 5.8.1 The Pearlite Reaction in Fe–C Alloys
 Nucleation of Pearlite
 Pearlite Growth
 Pearlite in Off-Eutectoid Fe–C Alloys
 5.8.2 The Bainite Transformation
Contents

Upper Bainite 334
Lower Bainite 337
Transformation Shears 337
5.8.3 The Effect of Alloying Elements on Hardenability 338
5.8.4 Continuous Cooling Diagrams 344
5.8.5 Fibrous and Interphase Precipitation in Alloy Steels 349
5.9 Massive Transformations 349
5.10 Ordering Transformations 358
5.11 Case Studies 366
5.11.1 Titanium Forging Alloys 366
5.11.2 The Weldability of Low-Carbon and Microalloyed Rolled Steels 372
References 377
Further Reading 378
Exercises 379

6 Diffusionless Transformations 382
6.1 Characteristics of Diffusionless Transformations 383
6.1.1 The Solid Solution of Carbon in Iron 385
6.2 Martensite Crystallography 389
6.2.1 The Bain Model of the fcc → hct Transformation 391
6.2.2 Comparison of Crystallographic Theory with Experimental Results 396
6.3 Theories of Martensite Nucleation 397
6.3.1 Formation of Coherent Nuclei of Martensite 398
6.3.2 Role of Dislocations in Martensite Nucleation 401
6.3.3 Dislocation Strain Energy Assisted Transformation 406
6.4 Martensite Growth 409
6.4.1 Growth of Lath Martensite 410
6.4.2 Plate Martensite 412
6.4.3 Stabilization 415
6.4.4 Effect of External Stresses 415
6.4.5 Role of Grain Size 416
6.5 Pre-martensite Phenomena 416
6.6 Tempering of Ferrous Martensites 417
Carbon Segregation 420
ε-Carbide 421
Cementite 422
Alloy Carbides 422
Effect of Retained Austenite 426
Recovery, Recrystallization and Grain Growth 426
Temper Embrittlement 427
6.7 Case Studies 428
6.7.1 Carbon and Low-Alloy Quenched and Tempered Steels 428
6.7.2 Controlled Transformation Steels 430
Contents

6.7.3 The ‘Shape-Memory’ Metal: Nitinol

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>431</td>
</tr>
<tr>
<td>Further Reading</td>
<td>439</td>
</tr>
<tr>
<td>Exercises</td>
<td>439</td>
</tr>
</tbody>
</table>

Solutions to exercises 441

Compiled by John C. Ion

Index 510