CONTENTS

INTRODUCTION ... 1
 General remarks, 1—Symmetry elements and symmetry operations, 1—Point groups, 5

CHAPTER I: ROTATION AND ROTATION SPECTRA ... 13
1. Linear Molecules ... 13
 Energy levels, 14—Symmetry properties, 15—Statistical weights and influence of nuclear spin and statistics, 16—Thermal distribution of rotational levels, 18—Infrared rotation spectrum, 19—Rotational Raman spectrum, 20

2. Symmetric Top Molecules ... 22
 Classical motion (vector diagram), 22—Energy levels, 24—Symmetry properties and statistical weights, 26—Thermal distribution of rotational levels, 29—Infrared spectrum, 29—Rotational Raman spectrum, 34

3. Spherical Top Molecules .. 37
 Classical motion, 38—Energy levels, 38—Statistical weights and symmetry properties, 38—Thermal distribution of rotational levels, 40—Infrared spectrum, 41—Rotational Raman spectrum, 41

4. Asymmetric Top Molecules .. 42
 Classical motion, 42—Energy levels, 44—Influence of non-rigidity, 49—Symmetry properties and statistical weights, 50—Infrared rotation spectrum, 55—Raman spectrum, 59

CHAPTER II: VIBRATIONS, VIBRATIONAL ENERGY LEVELS, AND VIBRATIONAL EIGENFUNCTIONS ... 61
1. Nature of Normal Vibrations: Classical Theory ... 61
 Vibrational degrees of freedom, 61—Vibrations of a mass suspended by an elastic bar, 62—Vibrations of the nuclei in a molecular model, 64—Mathematical formulation, 67—Normal coordinates, orthogonality of normal vibrations, 70—Potential energy and kinetic energy, 72—Degenerate vibrations, generalization of the definition of a normal vibration, 75

2. Vibrational Energy Levels and Eigenfunctions .. 76
 General, 76—Energy levels, 77—Eigenfunctions, 78—Degenerate vibrations, 80

3. Symmetry of Normal Vibrations and Vibrational Eigenfunctions 82
 (a) Effect of symmetry operations on non-degenerate normal vibrations 82
CONTENTS

(b) Effect of symmetry operations on degenerate normal vibrations.... 83
Two simple examples, 83—Plane doubly degenerate vibrations, 87
—More general doubly degenerate vibrations, 94—Complex normal coordinates, 98—Triply degenerate vibrations, 99

(c) Effect of symmetry operations on the vibrational eigenfunctions... 101
Molecules with non-degenerate vibrations only, 101—Molecules with degenerate vibrations, 103—Generalization, 104

(d) Symmetry types (species) of normal vibrations and eigenfunctions. 104
Point groups C_1, C_3, C_7, and C_i, 105—Point groups C_{2v}, C_{2h} and $D_2 \equiv V$, 106—Point group $V_h \equiv D_{2h}$, 106—Degenerate symmetry types, 108—Point groups C_{3v} and D_3, 109—Point group C_{5v}, 111—Point group C_{av}, 111—Point groups C_{4v}, D_4 and $D_{2d} \equiv V_d$, 112—Point groups C_{6v} and D_6, 114—Point groups $D_{3d} (\equiv S_6)$ and $D_{4d} (\equiv S_{4v})$, 114—Point groups D_{5h} and D_{5v}, 116—Point groups D_{4h} and D_{5h}, 116—Point group D_{6h}, 118—Point groups C_p, 119—Point groups S_4 and S_6, 120—Point groups C_{ph}, 120—Point groups T_d and O, 121—Point group O_h, 122—Point group T, 123

(e) Symmetry types (species) of the higher vibrational levels........... 123
Non-degenerate vibrations, 124—Binary combinations of a non-degenerate and a degenerate vibration, 125—Multiple excitation of a single, degenerate vibration, 125—Binary combinations of two different degenerate vibrations, 129—More general cases, 130

4. Determination of Normal Modes of Vibration......................... 131
(a) Number of normal vibrations of a given symmetry type (species).... 131
Sets of equivalent nuclei, 131—Non-degenerate vibrations, 131—Degenerate vibrations, 135
(b) Methods for the general solution of the secular equation............ 140
Solution in Cartesian coordinates, 140—Solution in “internal” coordinates, 142—Solution by the use of symmetry coordinates, 145—Application to non-linear XY_2, 148—Application to symmetrical planar X_2Y_4, 150—Application to linear symmetrical XY_2, 153—Application to pyramidal XY_3, 154—Solution by the use of mechanical models, 157

(c) Assumption of central forces.. 159
General considerations, 159—Application to non-linear symmetric XY_2, 160—Linear triatomic and plane more-than-triatomic molecules, 161—Application to pyramidal XY_3 molecules, 162—Application to tetrahedral XY_4 molecules, 165

(d) Assumption of valence forces....................................... 168
Application to non-linear symmetric XY_2, 168—Application to linear XY_2 molecules, 172—Application to linear XYZ molecules, 173—Application to non-linear XYZ molecules, 174—Application to pyramidal XY_3 molecules, 175—Application to plane XY_3 molecules, 177—Application to plane XYZ_2 molecules, 179—Application to linear symmetric X_2Y_2 molecules, 180—Application to tetrahedral XY_4 molecules, 181—Application to plane X_2Y_4 (point group V_h), 183—Other molecules, 186
CONTENTS

(e) Assumption of more general force fields
 186
 XY₂ molecules, 186—Pyramidal XY₃ molecules, 187—Linear X₂Y₂
 molecules, 188—Tetrahedral XY₄ molecules, 189—Plane X₂Y₄
 molecules (Sutherland and Dennison's method), 189—Other mole-
 cules, 191

(f) Intercomparison of force constants in different molecules, characteristic
 bond frequencies, stretching and bending vibrations, and related
 matters
 192
 Invariance of force constants in different molecules, 192—Char-
 acteristic bond (group) frequencies, 194

5. ANHARMONICITY AND INTERACTION OF VIBRATIONS: LIMITATIONS OF THE
 CONCEPT OF NORMAL VIBRATIONS
 201
 (a) Influence of anharmonicity for non-degenerate vibrations
 201
 A simple potential surface, 201—Classical anharmonic motion, 204
 —Energy levels, 205—Vibrational eigenfunctions, 209
 (b) Influence of anharmonicity for (non-accidentally) degenerate vibra-
 tions
 210
 General energy formula for the case of doubly degenerate vibra-
 tions, 210—Application to linear molecules, 211—Application to
 some non-linear molecules, 212
 (c) Accidental degeneracy, Fermi resonance
 215
 Qualitative discussion, 215—Mathematical formulation, 215—
 Application to CO₂ and similar cases, 217—Application to H₂O,
 218—Splitting of the t₁ degeneracy, 219
 (d) Several potential minima
 220
 General remarks, 220—Inversion doubling in NH₃ and similar
 molecules, 221—Optical isomers, 224—Torsional oscillations, 225

6. ISOTOPE EFFECT
 227
 Introductory remarks, 227—Triatomic molecules, 228—The
 Teller-Redlich product rule, 231—Resolution of the symmetry
 types of a point group into those of a point group of lower sym-
 metry, 235—Application to the unsymmetrically substituted iso-
 topes of an XY₄ molecule, 236

CHAPTER III: VIBRATIONAL INFRARED AND RAMAN SPECTRA
 239

1. CLASSICAL TREATMENT
 239
 (a) Infrared vibration spectra
 239
 Active and inactive fundamentals, 239—Overtone and combina-
 tion vibrations, 241
 (b) Vibrational Raman spectra
 242
 Elementary treatment of fundamentals, 242—Mathematical form-
 mulation: the polarizability ellipsoid, 243—Overtone and combina-
 tion vibrations, 245—Polarization of Rayleigh and Raman scatter-
 ing, 246
2. QUANTUM-THEORETICAL TREATMENT ... 249
 (a) Elementary treatment of fundamentals 249
 (b) Rigorous vibrational selection rules 251
 Infrared spectrum, 251—Raman spectrum, 254—The rule of
 mutual exclusion, 256—Inversion doubling, 256
 (c) More refined treatment of fundamentals 258
 General rule, 258—Examples, 258—Alternative treatment; intensi-
 ties, 259
 (d) Overtone and combination bands 261
 General remarks, 261—Overtone bands, 262—Summation bands,
 265—Influence of Fermi resonance, 265—Difference bands, 266
 (e) Polarization of Raman lines ... 269

3. INDIVIDUAL MOLECULES .. 271
 (a) Triatomic Molecules ... 272
 Carbon dioxide, CO₂, 272—Carbon disulfide, CS₂, 276—Nitrous
 oxide, N₂O, 277—Hydrogen cyanide, HCN, 279—Water, H₂O,
 280—Heavy water HDO and D₂O, 282—Hydrogen sulfide, H₂S,
 HDS, D₂S, 282—Nitrogen peroxide, NO₂, 284—Sulfur dioxide,
 SO₂, 285—Ozone, O₃, 285—Other triatomic molecules, 287
 (b) Four-atomic molecules .. 288
 Acetylene, C₂H₂, 288—Heavy acetylene, C₂HD and C₂D₂, 289—
 Cyanogen, C₂N₂, 293—Ammonia, NH₃ and ND₃, 294—Trihalides
 of phosphorus, arsenic, antimony, and bismuth, 297—Boron tri-
 fluoride, BF₃, 298—Phosphorus, P₄, 299—Formaldehyde, H₂CO
 and D₂CO, 300—Hydrogen peroxide, H₂O₂, 301—Other four-
 atomic molecules, 303
 (c) Five-atomic molecules .. 303
 Carbon suboxide, C₃O₂, 303—Methane, CH₄ and CD₄, 306—CH₃D,
 CH₂D₂, CHD₃, 309—Carbon tetrachloride, CCl₄, 310—Methyl
 chloride, CH₃Cl, 312—CH₂F, CH₂Br, CH₂I, CD₃Cl, CD₂Br, 314—
 Chloroform, CHCl₃, 316—Methylene chloride, CH₂Cl₂, 317—
 CHClBr and CHClBr₂, 320—Formic acid, HCOOH and HCOOD,
 321—Other five-atomic molecules, 323
 (d) Six-atomic molecules .. 323
 Diacetylene, HC≡C—C≡CH, 323—Ethylene, C₂H₄ and C₂D₄,
 325—Tetrachloroethylene, C₂Cl₄, 328—Cis and trans C₂H₂Cl₂,
 329—CH₂CN and CH₂NC, 332—Methyl alcohol, CH₃OH and
 CH₃OD, 334—Other six-atomic molecules, 335
 (e) Seven-atomic molecules ... 336
 Sulfur hexafluoride, SF₆, 336—Methyl acetylene, CH₂=C≡CH,
 337—Allene, CH₂=CH=CH₂, 339—Ethylene oxide, C₂H₄O, 340—
 Other seven-atomic molecules, 342
 (f) Eight-atomic molecules .. 342
 Ethane, C₂H₆ and C₂D₆, 342—C₃H₄Cl₂, C₃H₂Cl₄, and the question
 of rotational isomerism, 346—Other eight-atomic molecules, 351
(g) Nine-atomic molecules
Cyclopropane, C_3H_6, 352—Dimethyl ether, $(CH_3)2O$, 353—Propylene, $CH_3—CH=CH_2$, 354—Other nine-atomic molecules, 356

(h) Ten-atomic molecules
Dimethyl acetylene, $CH_3—C≡C—CH_3$, 356—Azomethane, $(CH_3)_2N_2$, 357—Other ten-atomic molecules, 359

(i) Eleven-atomic molecules
Propane, $CH_3—CH_2—CH_3$, 359—Other eleven-atomic molecules, 362

(j) Twelve-atomic molecules
Benzene, C_6H_6 and C_6D_6, 362—Other twelve-atomic molecules, 369

CHAPTER IV: INTERACTION OF ROTATION AND VIBRATION, ROTATION-VIBRATION SPECTRA

1. LINEAR MOLECULES

(a) Energy levels
Elementary treatment, 370—Symmetry properties of rotational levels, 372—More detailed theory of the rotational constants α_i; Coriolis interaction, 372—l-type doubling, 377—Perturbations, 378

(b) Infrared spectrum
Selection rules, 379—Types of infrared bands, 380—$\Sigma—\Sigma$ bands [type (1)], 380—$\Pi—\Sigma$ bands [type (2)], 384—$\Pi—\Pi$ bands [type (3)], 389—Combination differences, evaluation of rotational constants, 390—Examples, 391—Determination of internuclear distances: isotope effect, 395

(c) Raman spectrum
Selection rules, 398—Types of Raman bands, 399—Observed Raman bands, 399

2. SYMMETRIC TOP MOLECULES

(a) Energy levels
Non-degenerate vibrational states, 400—Degenerate vibrational states, 401—Symmetry properties of the rotational levels, 406—Inversion doubling, 411—Perturbations, 413

(b) Infrared spectrum
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c)</td>
<td>Raman spectrum</td>
<td>441</td>
</tr>
<tr>
<td></td>
<td>Selection rules, 441—Totally symmetric Raman bands, 441—Non-totally symmetric non-degenerate Raman bands, 442—Degenerate Raman bands, 443—Unresolved Raman bands, 444</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>SPHERICAL TOP MOLECULES</td>
<td>446</td>
</tr>
<tr>
<td>(a)</td>
<td>Energy levels</td>
<td>446</td>
</tr>
<tr>
<td></td>
<td>Non-degenerate vibrational states, 446—Degenerate vibrational states, 447—Symmetry properties of the rotational levels, 449—Inversion doubling, 451—Coriolis splitting of the rotational levels, 451</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>Infrared spectrum</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>Selection rules, 453—F_2-A_1 transitions, 453—Forbidden vibrational transitions, 456</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>Raman spectrum</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>Selection rules, 458—A_1-A_1 transitions, 458—$E-A_1$ transitions, 458—F_2-A_1 transitions, 458</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>ASYMMETRIC TOP MOLECULES</td>
<td>460</td>
</tr>
<tr>
<td>(a)</td>
<td>Energy levels</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>Unperturbed energy levels, 460—Symmetry properties, 462—Perturbations, 466</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>Infrared spectrum</td>
<td>468</td>
</tr>
<tr>
<td></td>
<td>Selection rules, 468—Type A bands, 469—Type B bands, 477—Type C bands, 480—Unresolved infrared bands, 482—Analysis of infrared bands of asymmetric top molecules, 484—Examples, moments of inertia and internuclear distances, 487</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>Raman spectrum</td>
<td>489</td>
</tr>
<tr>
<td></td>
<td>Selection rules, 489—Unresolved Raman bands, 490</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>MOLECULES WITH FREE OR HINDERED INTERNAL ROTATION</td>
<td>491</td>
</tr>
<tr>
<td>(a)</td>
<td>Energy levels</td>
<td>491</td>
</tr>
<tr>
<td></td>
<td>Free rotation, 491—Hindered rotation, 494</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>Infrared spectrum</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Symmetrical molecules, 496—Slightly asymmetric molecules, CH$_3$OH, 497</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>Raman spectrum</td>
<td>500</td>
</tr>
<tr>
<td>5.</td>
<td>MOLECULES WITH FREE OR HINDERED INTERNAL ROTATION</td>
<td>491</td>
</tr>
<tr>
<td>(a)</td>
<td>Energy levels</td>
<td>491</td>
</tr>
<tr>
<td></td>
<td>Free rotation, 491—Hindered rotation, 494</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>Infrared spectrum</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>Symmetrical molecules, 496—Slightly asymmetric molecules, CH$_3$OH, 497</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>Raman spectrum</td>
<td>500</td>
</tr>
<tr>
<td>CHAPTER V: APPLICATIONS</td>
<td>501</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CALCULATION OF THERMODYNAMIC QUANTITIES</td>
<td>501</td>
</tr>
<tr>
<td></td>
<td>The partition function (state sum), 501—The vibrational partition function, 503—The rotational partition function, 505—Partition function for molecules with internal rotations, 510—Heat content and heat capacity, 512—Entropy and free energy, 519—Chemical equilibria, 526</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>NATURE OF LIQUID AND SOLID STATES: INTERMOLECULAR FORCES</td>
<td>531</td>
</tr>
<tr>
<td></td>
<td>Rotation of molecules in liquids and solids, 531—Molecular vibrations in liquids and solids, 534</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

APPENDIX: PHYSICAL CONSTANTS AND CONVERSION FACTORS	538
BIBLIOGRAPHY	539
AUTHOR INDEX	563
SUBJECT INDEX	572