Introduction to Mathematical Control Theory

Second Edition
4.5. State observers 134
4.6. Realization of constant systems 137
4.7. Discrete-time systems 153
4.8. †Realization of time varying systems 157
Additional problems 161

5. STABILITY
5.1. Definitions 169
5.2. Algebraic criteria for linear systems
 5.2.1. Continuous-time 177
 5.2.2. Discrete-time 186
 5.2.3. Time varying 191
5.3. Nyquist criterion for linear systems 195
5.4. Liapunov theory 204
5.5. Application of Liapunov theory to linear systems 213
5.6. Construction of Liapunov functions
 5.6.1. Variable gradient method 221
 5.6.2. Zubov's method 224
5.7. Stability and control
 5.7.1. Input–output stability 226
 5.7.2. Linear feedback 228
 5.7.3. †Nonlinear feedback 230
Additional problems 238

6. OPTIMAL CONTROL
6.1. Performance indices
 6.1.1. Measures of performance 245
 6.1.2. Evaluation of quadratic indices 248
6.2. Calculus of variations 252
6.3. Pontryagin's principle 263
6.4. Linear regulator 275
Additional problems 284

7. MULTIVARIABLE SYSTEMS:
 THE FREQUENCY-DOMAIN APPROACH
7.1. Poles and zeros of the internal model 291
7.2. Poles and zeros of the external model 305
 7.2.1. Definition via the Smith–McMillan form 306
 7.2.2. Matrix-fraction description 309

† May be omitted on a first reading.
7.3. Generalizations of the Nyquist diagram
 7.3.1. Characteristic gain and characteristic frequency functions 318
 7.3.2. Algebraic functions and the Riemann surface 322
 7.3.3. Poles and zeros: characteristic gain and frequency loci 323
 7.3.4. The inverse Nyquist array 332

7.4. Design of multivariable controllers
 7.4.1. Preamble: the design problem and objectives 340
 7.4.2. The inverse Nyquist array method 343
 7.4.3. The characteristic locus method 355
 Additional problems 369

APPENDIX: The Kalman-Bucy filter 374

REFERENCES 379

ANSWERS TO EXERCISES 383

ANSWERS TO ADDITIONAL PROBLEMS 392

INDEX 400