ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES

Ilja TUREK
Institute of Physics of Materials, Brno
Academy of Sciences of the Czech Republic

Václav DRCHAL, Josef KUDRNOVSKÝ
Institute of Physics, Prague
Academy of Sciences of the Czech Republic
and Institute for Technical Electrochemistry
Technical University of Vienna, Austria

Mojmír ŠOB
Institute of Physics of Materials, Brno
Academy of Sciences of the Czech Republic

Peter WEINBERGER
Institute for Technical Electrochemistry
Technical University of Vienna, Austria

KLUWER ACADEMIC PUBLISHERS
Boston/London/Dordrecht
CONTENTS

PREFACE

1 INTRODUCTION

1.1 Electronic Structure of Solids
 1.1.1 Born-Oppenheimer (Adiabatic) Approximation
 1.1.2 Selfconsistent Field Approximation
 1.1.3 Density Functional Theory
 1.1.4 Local Density Approximation to the Exchange-Correlation Functional
 1.1.5 Beyond the Local Density Approximation
 1.1.6 Methods of Electronic Structure Calculations for Perfect Solids

1.2 Systems with Reduced Symmetry

1.3 Tight-Binding Approximation
 1.3.1 Tight-Binding Hamiltonian
 1.3.2 Semiempirical and First-Principles Tight-Binding Calculations

1.4 Resolvents and Green Functions

References

2 LINEAR MUFFIN-TIN ORBITAL (LMTO) METHOD

2.1 Secular Equation
 2.1.1 Atomic Sphere Approximation
 2.1.2 Single-Site Problem
 2.1.3 Muffin-Tin Orbitals and Tail Cancellation
 2.1.4 Lattice Fourier Transformations
2.2 Variational Principle
 2.2.1 Energy Linearization
 2.2.2 Linear Muffin-Tin Orbitals
 2.2.3 Hamiltonian and Overlap Matrices
 2.2.4 Potential Parameters

References

3 GREEN FUNCTION METHOD
 3.1 Green Functions in Solids
 3.1.1 General Comments
 3.1.2 Green Functions within Atomic Sphere Approximation
 3.1.3 Green Functions in the LMTO Method
 3.2 Tight-Binding LMTO Method
 3.2.1 Basic Definitions and Properties
 3.2.2 Particular Representations
 3.2.3 Ab Initio Tight-Binding Hamiltonians
 3.2.4 Screening Transformations and Reference Potentials
 3.3 Relation to the KKR Method
 3.4 Green Functions in Layered Systems
 3.4.1 Principal Layers
 3.4.2 Partitioning Technique
 3.4.3 Surface Green Functions and Embedding Potentials
 3.4.4 Semiinfinite Homogeneous Systems
 3.4.5 Green Function in the Intermediate Region
 3.4.6 Concluding Remarks
 3.5 Calculation of Observables
 3.5.1 Charge Densities
 3.5.2 Densities of States
 3.5.3 Bloch Spectral Functions

References

4 COHERENT POTENTIAL APPROXIMATION (CPA)
 4.1 Configurational Average of Green Function
 4.2 Single-Site Approximation
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>Transformation Properties of the CPA</td>
<td>124</td>
</tr>
<tr>
<td>4.2.2</td>
<td>A Few Additional Remarks</td>
<td>125</td>
</tr>
<tr>
<td>4.3</td>
<td>Calculation of Observables</td>
<td>128</td>
</tr>
<tr>
<td>4.4</td>
<td>Properties and Limitations of the CPA</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>133</td>
</tr>
<tr>
<td>5</td>
<td>SELFCONSISTENCY WITHIN ATOMIC SPHERE APPROXIMATION</td>
<td>137</td>
</tr>
<tr>
<td>5.1</td>
<td>Charge Selfconsistency</td>
<td>137</td>
</tr>
<tr>
<td>5.1.1</td>
<td>One-Electron Potentials</td>
<td>139</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Charge Densities</td>
<td>143</td>
</tr>
<tr>
<td>5.2</td>
<td>Electrostatic (Madelung) Fields</td>
<td>145</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Crystalline Structures</td>
<td>146</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Layered Structures</td>
<td>147</td>
</tr>
<tr>
<td>5.3</td>
<td>Total Energy</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>156</td>
</tr>
<tr>
<td>6</td>
<td>RELATIVISTIC THEORY</td>
<td>159</td>
</tr>
<tr>
<td>6.1</td>
<td>Relativistic TB-LMTO Method: Non-Magnetic Case</td>
<td>160</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Dirac Equation</td>
<td>160</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Solution for a Single Spherically Symmetric Potential Well</td>
<td>161</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Potential Parameters</td>
<td>165</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Relativistic Structure Constants</td>
<td>167</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Green Functions and the Coherent Potential Approximation</td>
<td>169</td>
</tr>
<tr>
<td>6.1.6</td>
<td>Charge Selfconsistency</td>
<td>170</td>
</tr>
<tr>
<td>6.1.7</td>
<td>Symmetry of Non-Magnetic Systems</td>
<td>172</td>
</tr>
<tr>
<td>6.1.8</td>
<td>Summary</td>
<td>173</td>
</tr>
<tr>
<td>6.2</td>
<td>Relativistic TB-LMTO Method: Spin-Polarized Case</td>
<td>174</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Dirac Equation in the Presence of a Magnetic Field</td>
<td>174</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Spin-Polarized Solution for a Single Spherically Symmetric Potential Well</td>
<td>175</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Potential Parameters</td>
<td>181</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Relativistic Structure Constants</td>
<td>183</td>
</tr>
<tr>
<td>6.2.5</td>
<td>The LMTO Hamiltonian and Green Functions</td>
<td>183</td>
</tr>
</tbody>
</table>
8.3.2 Complex Magnetic Structures in Random Alloys

References

9 EFFECTIVE INTERATOMIC INTERACTIONS IN ALLOYS

9.1 Ising Model for Alloys
 9.1.1 Ising Hamiltonian
 9.1.2 Determination of Parameters
 9.1.3 Determination of Phase Diagrams

9.2 Generalized Perturbation Method
 9.2.1 Single-Site Approximation for Charge Densities
 9.2.2 Effective One-Electron Potential
 9.2.3 Total Energy
 9.2.4 Charge-Transfer Effects
 9.2.5 Band Term
 9.2.6 Derivation of the Generalized Perturbation Method
 9.2.7 Core Contributions
 9.2.8 Double-Counting Terms and Non-Spherical Corrections
 9.2.9 Madelung Contributions

9.3 Bulk Systems
 9.3.1 Case Study: Cu50Ni50 Alloy

9.4 Surfaces
 9.4.1 Case Study: fcc (001) Surface of Cu50Ni50 Alloy

9.5 Concluding Remarks

References

10 NUMERICAL IMPLEMENTATION

10.1 Tight-Binding Structure Constants
10.2 Radial Schrödinger and Dirac Equations
10.3 Complex Contour Energy Integration
10.4 Analytic Continuation
10.5 Brillouin Zone Integration
10.6 Surface Green Functions
 10.6.1 Reciprocal Space Approach
 10.6.2 Real Space Approach

References