Bruce P. Palka

An Introduction to Complex Function Theory

With 138 Illustrations

Springer
Contents

Preface vii

I The Complex Number System 1

1 The Algebra and Geometry of Complex Numbers 1
 1.1 The Field of Complex Numbers 1
 1.2 Conjugate, Modulus, and Argument 5

2 Exponentials and Logarithms of Complex Numbers 13
 2.1 Raising e to Complex Powers 13
 2.2 Logarithms of Complex Numbers 15
 2.3 Raising Complex Numbers to Complex Powers 16

3 Functions of a Complex Variable 17
 3.1 Complex Functions 17
 3.2 Combining Functions 19
 3.3 Functions as Mappings 20

4 Exercises for Chapter I 25

II The Rudiments of Plane Topology 33

1 Basic Notation and Terminology 33
 1.1 Disks 33
 1.2 Interior Points, Open Sets 34
 1.3 Closed Sets 34
 1.4 Boundary, Closure, Interior 35
 1.5 Sequences 35
 1.6 Convergence of Complex Sequences 36
 1.7 Accumulation Points of Complex Sequences 37

2 Continuity and Limits of Functions 39
 2.1 Continuity 39
 2.2 Limits of Functions 43

3 Connected Sets 47
Contents

III Analytic Functions

1 Complex Derivatives 62
 1.1 Differentiability 62
 1.2 Differentiation Rules 64
 1.3 Analytic Functions 67

2 The Cauchy-Riemann Equations 68
 2.1 The Cauchy-Riemann System of Equations 68
 2.2 Consequences of the Cauchy-Riemann Relations .. 73

3 Exponential and Trigonometric Functions 75
 3.1 Entire Functions 75
 3.2 Trigonometric Functions 77
 3.3 The Principal Arccsine and Arctangent Functions .. 81

4 Branches of Inverse Functions 85
 4.1 Branches of Inverse Functions 85
 4.2 Branches of the \(p \)th-root Function 87
 4.3 Branches of the Logarithm Function 91
 4.4 Branches of the \(\lambda \)-power Function ... 92

5 Differentiability in the Real Sense 96
 5.1 Real Differentiability 96
 5.2 The Functions \(f_1 \) and \(f_2 \) 98

6 Exercises for Chapter III 101

IV Complex Integration

1 Paths in the Complex Plane 109
 1.1 Paths 109
 1.2 Smooth and Piecewise Smooth Paths 112
 1.3 Parametrizing Line Segments 114
 1.4 Reverse Paths, Path Sums 115
Contents

7.2 Contractible Paths .. 203
8 Exercises for Chapter V 204

VI Harmonic Functions .. 214
1 Harmonic Functions .. 215
 1.1 Harmonic Conjugates 215
2 The Mean Value Property 219
 2.1 The Mean Value Property 219
 2.2 Functions Harmonic in Annuli 221
3 The Dirichlet Problem for a Disk 226
 3.1 A Heat Flow Problem 226
 3.2 Poisson Integrals 228
4 Exercises for Chapter VI 238

VII Sequences and Series of Analytic Functions 243
1 Sequences of Functions 243
 1.1 Uniform Convergence 243
 1.2 Normal Convergence 246
2 Infinite Series ... 248
 2.1 Complex Series 248
 2.2 Series of Functions 253
3 Sequences and Series of Analytic Functions 256
 3.1 General Results 256
 3.2 Limit Superior of a Sequence 259
 3.3 Taylor Series ... 260
 3.4 Laurent Series 269
4 Normal Families .. 278
 4.1 Normal Subfamilies of $C(U)$ 278
 4.2 Equicontinuity 279
 4.3 The Arzelà-Ascoli and Montel Theorems 282
5 Exercises for Chapter VII 286

VIII Isolated Singularities of Analytic Functions 300
1 Zeros of Analytic Functions 300
 1.1 The Factor Theorem for Analytic Functions 300
 1.2 Multiplicity .. 303
 1.3 Discrete Sets, Discrete Mappings 306
2 Isolated Singularities 309
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Definition and Classification of Isolated Singularities</td>
<td>309</td>
</tr>
<tr>
<td>2.2</td>
<td>Removable Singularities</td>
<td>310</td>
</tr>
<tr>
<td>2.3</td>
<td>Poles</td>
<td>311</td>
</tr>
<tr>
<td>2.4</td>
<td>Meromorphic Functions</td>
<td>318</td>
</tr>
<tr>
<td>2.5</td>
<td>Essential Singularities</td>
<td>319</td>
</tr>
<tr>
<td>2.6</td>
<td>Isolated Singularities at Infinity</td>
<td>322</td>
</tr>
<tr>
<td>3</td>
<td>The Residue Theorem and its Consequences</td>
<td>323</td>
</tr>
<tr>
<td>3.1</td>
<td>The Residue Theorem</td>
<td>323</td>
</tr>
<tr>
<td>3.2</td>
<td>Evaluating Integrals with the Residue Theorem</td>
<td>326</td>
</tr>
<tr>
<td>3.3</td>
<td>Consequences of the Residue Theorem</td>
<td>339</td>
</tr>
<tr>
<td>4</td>
<td>Function Theory on the Extended Plane</td>
<td>349</td>
</tr>
<tr>
<td>4.1</td>
<td>The Extended Complex Plane</td>
<td>349</td>
</tr>
<tr>
<td>4.2</td>
<td>The Extended Plane and Stereographic Projection</td>
<td>350</td>
</tr>
<tr>
<td>4.3</td>
<td>Functions in the Extended Setting</td>
<td>352</td>
</tr>
<tr>
<td>4.4</td>
<td>Topology in the Extended Plane</td>
<td>354</td>
</tr>
<tr>
<td>4.5</td>
<td>Meromorphic Functions and the Extended Plane</td>
<td>356</td>
</tr>
<tr>
<td>5</td>
<td>Exercises for Chapter VIII</td>
<td>362</td>
</tr>
</tbody>
</table>

IX Conformal Mapping 374

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conformal Mappings</td>
<td>375</td>
</tr>
<tr>
<td>1.1</td>
<td>Curvilinear Angles</td>
<td>375</td>
</tr>
<tr>
<td>1.2</td>
<td>Diffeomorphisms</td>
<td>377</td>
</tr>
<tr>
<td>1.3</td>
<td>Conformal Mappings</td>
<td>379</td>
</tr>
<tr>
<td>1.4</td>
<td>Some Standard Conformal Mappings</td>
<td>383</td>
</tr>
<tr>
<td>1.5</td>
<td>Self-Mappings of the Plane and Unit Disk</td>
<td>388</td>
</tr>
<tr>
<td>1.6</td>
<td>Conformal Mappings in the Extended Plane</td>
<td>389</td>
</tr>
<tr>
<td>2</td>
<td>Möbius Transformations</td>
<td>391</td>
</tr>
<tr>
<td>2.1</td>
<td>Elementary Möbius Transformations</td>
<td>391</td>
</tr>
<tr>
<td>2.2</td>
<td>Möbius Transformations and Matrices</td>
<td>392</td>
</tr>
<tr>
<td>2.3</td>
<td>Fixed Points</td>
<td>394</td>
</tr>
<tr>
<td>2.4</td>
<td>Cross-ratios</td>
<td>396</td>
</tr>
<tr>
<td>2.5</td>
<td>Circles in the Extended Plane</td>
<td>398</td>
</tr>
<tr>
<td>2.6</td>
<td>Reflection and Symmetry</td>
<td>399</td>
</tr>
<tr>
<td>2.7</td>
<td>Classification of Möbius Transformations</td>
<td>402</td>
</tr>
<tr>
<td>2.8</td>
<td>Invariant Circles</td>
<td>408</td>
</tr>
<tr>
<td>3</td>
<td>Riemann's Mapping Theorem</td>
<td>416</td>
</tr>
<tr>
<td>3.1</td>
<td>Preparations</td>
<td>416</td>
</tr>
<tr>
<td>3.2</td>
<td>The Mapping Theorem</td>
<td>419</td>
</tr>
<tr>
<td>4</td>
<td>The Carathéodory-Osgood Theorem</td>
<td>423</td>
</tr>
<tr>
<td>4.1</td>
<td>Topological Preliminaries</td>
<td>423</td>
</tr>
<tr>
<td>4.2</td>
<td>Double Integrals</td>
<td>426</td>
</tr>
</tbody>
</table>
4.3 Conformal Modulus ... 427
4.4 Extending Conformal Mappings of the Unit Disk ... 440
4.5 Jordan Domains ... 445
4.6 Oriented Boundaries 447

5 Conformal Mappings onto Polygons 450
5.1 Polygons .. 450
5.2 The Reflection Principle 451
5.3 The Schwarz-Christoffel Formula 454

6 Exercises for Chapter IX 466

X Constructing Analytic Functions 477
1 The Theorem of Mittag-Leffler 477
1.1 Series of Meromorphic Functions 477
1.2 Constructing Meromorphic Functions 479
1.3 The Weierstrass \wp-function 486
2 The Theorem of Weierstrass 490
2.1 Infinite Products ... 490
2.2 Infinite Products of Functions 493
2.3 Infinite Products and Analytic Functions 495
2.4 The Gamma Function 504

3 Analytic Continuation 507
3.1 Extending Functions by Means of Taylor Series 507
3.2 Analytic Continuation 510
3.3 Analytic Continuation Along Paths 512
3.4 Analytic Continuation and Homotopy 517
3.5 Algebraic Function Elements 520
3.6 Global Analytic Functions 527

4 Exercises for Chapter X 535

Appendix A Background on Fields 543
1 Fields ... 543
1.1 The Field Axioms ... 543
1.2 Subfields .. 544
1.3 Isomorphic Fields .. 544

2 Order in Fields ... 545
2.1 Ordered Fields ... 545
2.2 Complete Ordered Fields 546
2.3 Implications for Real Sequences 546
Appendix B Winding Numbers Revisited

1 Technical Facts About Winding Numbers
1.1 The Geometric Interpretation
1.2 Winding Numbers and Jordan Curves

Index