Contents

CHAPTER 1 INTEGRATED-CIRCUIT DEVICES AND MODELLING 1
1.1 Semiconductors and pn Junctions 1
1.2 MOS Transistors 16
1.3 Advanced MOS Modelling 39
1.4 Bipolar-Junction Transistors 42
1.5 Device Model Summary 56
1.6 SPICE-Modelling Parameters 61
1.7 Appendix 65
1.8 References 78
1.9 Problems 78

CHAPTER 2 PROCESSING AND LAYOUT 82
2.1 CMOS Processing 82
2.2 Bipolar Processing 95
2.3 CMOS Layout and Design Rules 96
2.4 Analog Layout Considerations 105
2.5 Latch-Up 118
2.6 References 121
2.7 Problems 121

CHAPTER 3 BASIC CURRENT MIRRORS AND SINGLE-STAGE AMPLIFIERS 125
3.1 Simple CMOS Current Mirror 125
3.2 Common-Source Amplifier 128
3.3 Source-Follower or Common-Drain Amplifier 129
3.4 Common-Gate Amplifier 132
3.5 Source-Degenerated Current Mirrors 135
3.6 High-Output-Impedance Current Mirrors 137
3.7 Cascode Gain Stage 140
3.8 MOS Differential Pair and Gain Stage 142
3.9 Bipolar Current Mirrors 146
3.10 Bipolar Gain Stages 149
CHAPTER 4 NOISE ANALYSIS AND MODELLING 181
4.1 Time-Domain Analysis 181
4.2 Frequency-Domain Analysis 186
4.3 Noise Models for Circuit Elements 196
4.4 Noise Analysis Examples 204
4.5 References 216
4.6 Problems 217

CHAPTER 5 BASIC OPAMP DESIGN AND COMPENSATION 221
5.1 Two-Stage CMOS Opamp 221
5.2 Feedback and Opamp Compensation 232
5.3 SPICE Simulation Examples 251
5.4 References 252
5.5 Problems 253

CHAPTER 6 ADVANCED CURRENT MIRRORS AND OPAMPS 256
6.1 Advanced Current Mirrors 256
6.2 Folded-Cascode Opamp 266
6.3 Current-Mirror Opamp 273
6.4 Linear Settling Time Revisited 278
6.5 Fully Differential Opamps 280
6.6 Common-Mode Feedback Circuits 287
6.7 Current-Feedback Opamps 291
6.8 SPICE Simulation Examples 295
6.9 References 299
6.10 Problems 300

CHAPTER 7 COMPARATORS 304
7.1 Using an Opamp for a Comparator 304
7.2 Charge-Injection Errors 308
7.3 Latched Comparators 317
7.4 Examples of CMOS and BiCMOS Comparators 321
7.5 Examples of Bipolar Comparators 328
7.6 References 330
7.7 Problems 331
<table>
<thead>
<tr>
<th>CHAPTER 8</th>
<th>SAMPLE AND HOLDS, VOLTAGE REFERENCES, AND TRANSLINEAR CIRCUITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Performance of Sample-and-Hold Circuits</td>
<td>334</td>
</tr>
<tr>
<td>8.2 MOS Sample-and-Hold Basics</td>
<td>336</td>
</tr>
<tr>
<td>8.3 Examples of CMOS S/H Circuits</td>
<td>343</td>
</tr>
<tr>
<td>8.4 Bipolar and BiCMOS Sample and Holds</td>
<td>349</td>
</tr>
<tr>
<td>8.5 Bandgap Voltage Reference Basics</td>
<td>353</td>
</tr>
<tr>
<td>8.6 Circuits for Bandgap References</td>
<td>357</td>
</tr>
<tr>
<td>8.7 Translinear Gain Cell</td>
<td>364</td>
</tr>
<tr>
<td>8.8 Translinear Multiplier</td>
<td>366</td>
</tr>
<tr>
<td>8.9 References</td>
<td>368</td>
</tr>
<tr>
<td>8.10 Problems</td>
<td>370</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 9</th>
<th>DISCRETE-TIME SIGNALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Overview of Some Signal Spectra</td>
<td>373</td>
</tr>
<tr>
<td>9.2 Laplace Transforms of Discrete-Time Signals</td>
<td>374</td>
</tr>
<tr>
<td>9.3 z-Transform</td>
<td>377</td>
</tr>
<tr>
<td>9.4 Downsampling and Upsampling</td>
<td>379</td>
</tr>
<tr>
<td>9.5 Discrete-Time Filters</td>
<td>382</td>
</tr>
<tr>
<td>9.6 Sample-and-Hold Response</td>
<td>389</td>
</tr>
<tr>
<td>9.7 References</td>
<td>391</td>
</tr>
<tr>
<td>9.8 Problems</td>
<td>391</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 10</th>
<th>SWITCHED-CAPACITOR CIRCUITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Basic Building Blocks</td>
<td>394</td>
</tr>
<tr>
<td>10.2 Basic Operation and Analysis</td>
<td>398</td>
</tr>
<tr>
<td>10.3 First-Order Filters</td>
<td>409</td>
</tr>
<tr>
<td>10.4 Biquad Filters</td>
<td>415</td>
</tr>
<tr>
<td>10.5 Charge Injection</td>
<td>423</td>
</tr>
<tr>
<td>10.6 Switched-Capacitor Gain Circuits</td>
<td>427</td>
</tr>
<tr>
<td>10.7 Correlated Double-Sampling Techniques</td>
<td>433</td>
</tr>
<tr>
<td>10.8 Other Switched-Capacitor Circuits</td>
<td>434</td>
</tr>
<tr>
<td>10.9 References</td>
<td>441</td>
</tr>
<tr>
<td>10.10 Problems</td>
<td>443</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 11</th>
<th>DATA CONVERTER FUNDAMENTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Ideal D/A Converter</td>
<td>445</td>
</tr>
<tr>
<td>11.2 Ideal A/D Converter</td>
<td>447</td>
</tr>
<tr>
<td>11.3 Quantization Noise</td>
<td>448</td>
</tr>
<tr>
<td>11.4 Signed Codes</td>
<td>452</td>
</tr>
</tbody>
</table>
11.5 Performance Limitations 454
11.6 References 461
11.7 Problems 461

CHAPTER 12 NYQUIST-RATE D/A CONVERTERS 463
12.1 Decoder-Based Converters 463
12.2 Binary-Scaled Converters 469
12.3 Thermometer-Code Converters 475
12.4 Hybrid Converters 481
12.5 References 484
12.6 Problems 484

CHAPTER 13 NYQUIST-RATE A/D CONVERTERS 487
13.1 Integrating Converters 487
13.2 Successive-Approximation Converters 492
13.3 Algorithmic (or Cyclic) A/D Converter 504
13.4 Flash (or Parallel) Converters 507
13.5 Two-Step A/D Converters 513
13.6 Interpolating A/D Converters 516
13.7 Folding A/D Converters 519
13.8 Pipelined A/D Converters 523
13.9 Time-Interleaved A/D Converters 526
13.10 References 527
13.11 Problems 528

CHAPTER 14 OVERSAMPLING CONVERTERS 531
14.1 Oversampling without Noise Shaping 531
14.2 Oversampling with Noise Shaping 538
14.3 System Architectures 547
14.4 Digital Decimation Filters 551
14.5 Higher-Order Modulators 555
14.6 Bandpass Oversampling Converters 557
14.7 Practical Considerations 559
14.8 Multi-Bit Oversampling Converters 565
14.9 Third-Order A/D Design Example 568
14.10 References 571
14.11 Problems 572

CHAPTER 15 CONTINUOUS-TIME FILTERS 574
15.1 Introduction to G_m-C Filters 575
15.2 Bipolar Transconductors 584