An Introduction to Computer Simulation Methods

Applications to Physical Systems

Second Edition

Harvey Gould
Department of Physics
Clark University

Jan Tobochnik
Department of Physics
Kalamazoo College

Addison-Wesley Publishing Company
Reading, Massachusetts • Menlo Park, California • New York
Don Mills, Ontario • Wokingham, England • Amsterdam • Bonn
Sydney • Singapore • Tokyo • Madrid • San Juan • Milan • Paris
CONTENTS

Preface v

1 Introduction 1
 1.1 Importance of Computers in Physics 2
 1.2 The Nature of Computer Simulation 3
 1.3 Importance of Graphics 4
 1.4 Programming Languages 5
 1.5 Learning to Program 7
 1.6 How to Use This Book 7
 1A Laboratory Report 8

2 The Coffee Cooling Problem 11
 2.1 Background 12
 2.2 The Euler Algorithm 13
 2.3 A Simple Example 14
 2.4 Some True BASIC Programs 15
 2.5 A Computer Program for the Euler Method 19
 2.6 The Coffee Cooling Problem 21
 2.7 Accuracy and Stability 24
 2.8 Simple Plots 26
 2.9 Visualization 29
 2.10 Nuclear Decay 32
 2.11 Overview 34
 2A Integer and Real Variables 35

3 The Motion of Falling Objects 37
 3.1 Background 38
 3.2 The Force on a Falling Object 38
 3.3 The Euler Method for Newton’s Laws of Motion 41
 3.4 A Program for One-Dimensional Motion 42
 3.5 Two-Dimensional Trajectories 48
Contents

3.6 Levels of Simulation 51
3.7 Further Applications 51
3A Subroutine for Drawing Axes 51
3B Data Files 52
3C Strong Typing and Debugging 53
3D The Euler-Richardson Method 56

4 The Two-Body Problem 59
4.1 Introduction 60
4.2 The Equations of Motion 60
4.3 Circular and Elliptical Orbits 62
4.4 Astronomical Units 64
4.5 Array Variables and Aspect Ratio 64
4.6 Log-log and Semilog Plots 67
4.7 Simulation of the Orbit 70
4.8 Perturbations 74
4.9 Velocity Space 77
4.10 A Mini-Solar System 79
4.11 Two-Body Scattering 82
4.12 Projects 89

5 Simple Linear and Nonlinear Systems 95
5.1 Simple Harmonic Motion 96
5.2 Numerical Simulation of the Harmonic Oscillator 97
5.3 The Simple Pendulum 100
5.4 Output and Animation 103
5.5 Dissipative Systems 106
5.6 Response to External Forces 108
5.7 Electrical Circuit Oscillations 111
5.8 Projects 118
5A Numerical Integration of Newton’s Equation of Motion 120

6 The Chaotic Motion of Dynamical Systems 127
6.1 Introduction 128
6.2 A Simple One-Dimensional Map 128
6.3 Period-Doubling 135
6.4 Universal Properties and Self-Similarity 141
6.5 Measuring Chaos 146
6.6 Controlling Chaos 150
6.7 Higher-Dimensional Models 153
6.8 Forced Damped Pendulum 156
6.9 Hamiltonian Chaos 161
6.10 Perspective 169
6.11 Projects 170
6A Stability of the Fixed Points of the Logistic Map 180

7 Random Processes 185
7.1 Order to Disorder 186
7.2 The Poisson Distribution and Nuclear Decay 190
7.3 Introduction to Random Walks 194
7.4 Problems in Probability 198
7.5 Method of Least Squares 201
7.6 A Simple Variational Monte Carlo Method 206
7A Random Walks and the Diffusion Equation 210

8 The Dynamics of Many Particle Systems 213
8.1 Introduction 214
8.2 The Intermolecular Potential 214
8.3 The Numerical Algorithm 216
8.4 Boundary Conditions 216
8.5 Units 219
8.6 A Molecular Dynamics Program 220
8.7 Thermodynamic Quantities 230
8.8 Radial Distribution Function 237
8.9 Hard disks 240
8.10 Dynamical Properties 255
8.11 Extensions 261
8.12 Projects 263

9 Normal Modes and Waves 267
9.1 Coupled Oscillators and Normal Modes 268
9.2 Fourier Transforms 275
9.3 Wave Motion 286
9.4 Interference and Diffraction 292
9A Fast Fourier Transform 295

10 Electrodynamics 301
10.1 Static Charges 302
10.2 Numerical Solutions of Laplace’s Equation 310
10.3 Random Walk Solution of Laplace’s Equation 318
10.4 Fields Due to Moving Charges 321
10.5 Maxwell’s Equations 329
10.6 Project 339

11 Numerical Integration and Monte Carlo Methods 343
11.1 Numerical Integration Methods in One Dimension 344
11.2 Simple Monte Carlo Evaluation of Integrals 349
11.3 Numerical Integration of Multidimensional Integrals 351
11.4 Monte Carlo Error Analysis 353
11.5 Nonuniform Probability Distributions 358
11.6 Neutron Transport 361
11.7 Importance Sampling 364
11.8 Metropolis Monte Carlo Method 366
11A Error Estimates for Numerical Integration 368
11B The Standard Deviation of the Mean 370
11C The Acceptance-Rejection Method 371

12 Random Walks 373
12.1 Introduction 374
12.2 Modified Random Walks 378
12.3 Applications to Polymers 388
12.4 Diffusion Controlled Chemical Reactions 397
12.5 The Continuum Limit 400
12.6 Random Number Sequences 401
12.7 Projects 406

13 Percolation 413
13.1 Introduction 414
13.2 The Percolation Threshold 417
13.3 Cluster Labeling 424
13.4 Critical Exponents and Finite Size Scaling 431
13.5 The Renormalization Group 435
13.6 Projects 444

14 Fractals 451
14.1 The Fractal Dimension 452
14.2 Regular Fractals 461
14.3 Fractal Growth Processes 464
14.4 Fractals and Chaos 489
14.5 Many Dimensions 492
14.6 Projects 493
15 Complexity 501
15.1 Cellular Automata 502
15.2 Lattice Gas Models of Fluid Flow 513
15.3 Self-Organized Critical Phenomenon 518
15.4 Neural Networks 527
15.5 Genetic Algorithms 531
15.6 Overview and Projects 536

16 The Microcanonical Ensemble 543
16.1 Introduction 544
16.2 The Microcanonical Ensemble 544
16.3 The Demon Algorithm 546
16.4 One-Dimensional Classical Ideal Gas 547
16.5 The Temperature and the Canonical Ensemble 549
16.6 The Ising Model 550
16.7 Heat Flow 557
16.8 Comment 561
16A Relation of the Mean Demon Energy to the Temperature 561

17 Monte Carlo Simulation of the Canonical Ensemble 565
17.1 The Canonical Ensemble 566
17.2 The Metropolis Algorithm 566
17.3 Verification of the Boltzmann Distribution 568
17.4 The Ising Model 572
17.5 The Ising Phase Transition 584
17.6 Other Applications of the Ising Model 589
17.7 Simulation of Classical Fluids 594
17.8 Optimized Monte Carlo Data Analysis 600
17.9 Other Ensembles 605
17.10 More Applications 607
17.11 Projects 610
17A Fluctuations in the Canonical Ensemble 621
17B Exact Enumeration of the 2 × 2 Ising Model 622

18 Quantum Systems 627
18.1 Introduction 628
18.2 Review of Quantum Theory 629
18.3 Bound State Solutions 630
18.4 The Time-Dependent Schrödinger Equation 635
18.5 Introduction to Variational Methods 641
18.6 Random Walk Quantum Monte Carlo 644
18.7 Diffusion Quantum Monte Carlo 650
18.8 Path Integral Quantum Monte Carlo 654

19 Epilogue: The Same Algorithms Give the Same Results 661
19.1 The Unity of Physics 662
19.2 Percolation and Galaxies 663
19.3 Numbers, Pretty Pictures, and Insight 668
19.4 What are Computers Doing to Physics? 670

Appendixes

A From BASIC to FORTRAN 673
B From BASIC to C 693

Index 715