2 Estimating What Can Be Done Before Designing

2.1. INTRODUCTION
2.2. ANTIREFLECTION COATINGS
 2.2.1. Procedure
 2.2.2. The Formula
 2.2.3. Results
 2.2.4. Summary of Antireflection Coating Estimation
2.3. BANDPASS AND BLOCKER COATINGS
 2.3.1. Estimating the Width of a Blocking Band
 2.3.2. Estimating the Optical Density of a Blocking Band
 2.3.3. Estimating the Number of Layers and Thickness Needed
 2.3.4. Estimating More Complex Coatings
2.4. DICHROIC REFLECTION COATINGS
2.5. CHAPTER SUMMARY
2.6. REFERENCES

3 Fourier Viewpoint of Optical Coatings

3.1. INTRODUCTION
3.2. FOURIER CONCEPTS
 3.2.1. Background
 3.2.2. Some Limitations
 3.2.3. A Method to Determine the Multiple Reflections
 3.2.4. Overcoming Low Index Limitations With Thickness
 3.2.4.1. Low Index Limitations
 3.2.4.2. Benefit of Extra Thickness
 3.2.4.3. Observations of Extra Thickness Characteristics
 3.2.4.4. Fourier View of the Characteristics
 3.2.4.5. Conclusions with Respect to More Thickness
3.3. CONCLUSIONS
3.4. REFERENCES

4 Typical Equipment for Optical Coating Production

4.1. INTRODUCTION
4.2. GENERAL REQUIREMENTS
 4.2.1. The Vacuum
 4.2.1.1. How Good a Vacuum is Needed?
 4.2.1.2. How Can We Create the Vacuum Needed?
 Types of Pumps
 Mechanical Pumps
 Diffusion Pumps
7 Monitoring and Control of Thin Film Growth 212

7.1. INTRODUCTION 212
7.2. EFFECTS OF ERRORS 214
7.3. WAYS TO MONITOR 218
 7.3.1. Measured Charge 219
 7.3.2. Time/Rate Monitoring 220
 7.3.3. Crystal Monitoring 220
 7.3.4. Optical Thickness Monitors 222
 7.3.4.1. Single Wavelength Monitoring 222
 Turning Point Monitoring 223
 Level Monitoring 223
 Constant Level Monitoring 224
 7.3.4.2. Broad Band Optical Monitors 225
 7.3.4.3. Ellipsometric Monitors 225
 7.3.5. Trade-offs in Monitoring 226
7.4. ERROR COMPENSATION AND DEGREE OF CONTROL 228
 7.4.1. Narrow Bandpass Monitoring 228
 7.4.2. Error Compensation in Edge Filters 232
 7.4.3. Broad Band Monitoring Compensation 233
 7.4.4. Effects of Thin Film Wedge on the Monitor Chip 234
 7.4.5. Effects of Monochromator Bandwidth on Optical Monitoring 236
7.5. CALIBRATIONS AND VARIATIONS 236
 7.5.1. Tooling Factors 237
 7.5.2. Variations 238
 7.5.3. The Optical Monitor with Crystal Method of Schroedter 239
7.6. SENSITIVITY AND STRATEGIES 241
 7.6.1. Sensitivity versus Layer Termination Point in Reflectance 242
 7.6.2. Sensitivity versus g-value 244
 7.6.3. Precoated Monitor Chips 247
 7.6.4. Eliminating the Precoated Chip 247
 7.6.5. Constant Level Monitoring Strategies 248
 7.6.6. Steering the Monitoring Signal Result 252
 7.6.6.1. Departures from Ideal 252
 7.6.6.2. Steering Concept 253
 7.6.6.3. Algorithm 254
 7.6.6.4. More on Photometrics 256
 7.6.6.5. Example Case 256
 7.6.6.6. Lessons Learned 257
 7.6.6.7. Results 259
 7.6.7. Almost Achromatic Absentee Layers 260
7.7. PRACTICAL CONSIDERATIONS

7.7.1. A Narrow Bandpass Filter 263
7.7.2. A Special "Multichroic" Beamsplitter 263
7.7.3. A Very Broadband Antireflection Coating 265
7.7.4. Single Beam versus Double Beam Optical Monitors 271
7.7.5. Automation versus Manual Monitoring 272

7.8. CHAPTER SUMMARY 273
7.9. REFERENCES 274

Index 277