CHEMISTRY AND TECHNOLOGY OF ISOCYANATES

HENRI ULRICH
Chemical Consultant
Guilford, CT, USA

JOHN WILEY & SONS
Chichester • New York • Brisbane • Toronto • Singapore
CONTENTS

Preface xi
Acknowledgments xiii

1 Monoisocyanates 1

1.1 Alkyl and Aryl Isocyanates 1
1.1.1 Introduction 1
1.1.2 Synthesis of Alkyl and Aryl Isocyanates 3
1.1.2.1 Synthesis by Phosgenation Reactions 3
1.1.2.2 Formation of Alkyl and Aryl Isocyanates via Nitrene Intermediates 11
1.1.2.3 Formation of Alkyl and Aryl Isocyanates by Thermal Processes 19
1.1.2.4 Rearrangements of Nitrile Oxides and Cyanates 26
1.1.2.5 Reactions of Organic Halides with Salts of Cyanic Acid 27
1.1.2.6 Reaction of Olefins and Aldehydes with Isocyanic Acid 28
1.1.2.7 Isocyanates from Other Heterocumulenes 29
1.1.2.8 From Imines and Phosphineimines 30
1.1.2.9 Miscellaneous Synthetic Methods 31
1.1.3 References 36

1.1.4 Reactions of Alkyl and Aryl Isocyanates 42
1.1.4.1 Introduction 42
1.1.4.2 Oligomerization and Polymerization 45
1.1.4.3 Cycloaddition Reactions 54
1.1.4.4 Nucleophilic Reactions 98
1.1.4.5 Insertion Reactions 106
1.1.4.6 Miscellaneous Reactions 124
1.1.5 References 133
vi CONTENTS

1.2 Unsaturated Isocyanates 149
1.2.1 Introduction 149
1.2.2 Synthesis of Unsaturated Isocyanates 149
 1.2.2.1 Elimination of Hydrogen Halide from Halogenated Isocyanates 149
 1.2.2.2 Synthesis via Nitrene Intermediates 150
 1.2.2.3 From Amines, Imines or Nitriles and Phosgene 152
 1.2.2.4 Miscellaneous Synthetic Methods 154
1.2.3 Reactions of Unsaturated Isocyanates 157
 1.2.3.1 Homopolymerization 157
 1.2.3.2 Copolymerization 157
 1.2.3.3 Nucleophilic Reactions 157
 1.2.3.4 Cycloaddition Reactions 157
 1.2.3.5 Miscellaneous Reactions 160
1.2.4 References 161

1.3 Halogenated Alkyl and Aryl Isocyanates 163
1.3.1 Introduction 163
1.3.2 Synthesis of Halogenated Alkyl and Aryl Isocyanates 163
 1.3.2.1 Halogenation of Alkyl and Aryl Isocyanates 163
 1.3.2.2 Halogenation of Acyl and Thioacyl Isocyanates 167
 1.3.2.3 Addition of Halogen to Unsaturated Isocyanates 168
 1.3.2.4 Reaction of Amines, Imines and Nitriles with Phosgene and Analogues 168
 1.3.2.5 Synthesis of Halogenated Isocyanates via Nitrene Intermediates 172
 1.3.2.6 Miscellaneous Synthetic Methods 174
1.3.3 Reactions of Halogenated Isocyanates 179
 1.3.3.1 Nucleophilic Reactions 179
 1.3.3.2 Elimination of Hydrogen Halides and Acids 188
 1.3.3.3 Exchange Reactions with Silylated Heterocumulenes 188
 1.3.3.4 Reactions with Oxiranes and Aziridines 188
 1.3.3.5 Reactions with Multiple Bond Systems 189
 1.3.3.6 Cycloaddition Reactions 190
 1.3.3.7 Insertion Reactions 190
 1.3.3.8 Miscellaneous Reactions 190
1.3.4 References 192

1.4 Carbonyl, Thiocarbonyl and Imidoyl Isocyanates 197
1.4.1 Introduction 197
1.4.2 Synthesis 197
 1.4.2.1 Synthesis of Carbonyl Isocyanates 197
 1.4.2.2 Synthesis of Thiocarbonyl Isocyanates 212
 1.4.2.3 Synthesis of Imidoyl Isocyanates 213
2 Diisocyanates

2.1 Aliphatic Diisocyanates

2.1.1 Introduction

2.1.2 Synthesis of Aliphatic Diisocyanates

2.1.2.1 Phosgenation of Amines
2.1.2.2 Nonphosgene Processes
2.1.2.3 Formation via Nitrene Intermediates
2.1.2.4 From Olefins and Isocyanic Acid or Ethyl Carbamate
2.1.2.5 From Organic Dihalides and Salts of Isocyanic Acid
2.1.2.6 Miscellaneous Synthetic Methods

2.1.3 Manufacture of Major Aliphatic Diisocyanates

2.1.3.1 Hexamethylene Diisocyanate (HDI)
2.1.3.2 Isophorone (IPDI) and Trimethylhexamethylene Diisocyanates (TMHDI)
2.1.3.3 HMDI
2.1.3.4 trans-Cyclohexane Diisocyanate (CHDI)
2.1.3.5 Tetramethylxylene Diisocyanate (TMXDI)

2.1.4 Reactions of Aliphatic Diisocyanates

2.1.4.1 Homopolymerization
2.1.4.2 Copolymerization
2.1.4.3 Addition Polymerization
2.1.4.4 Condensation Polymerization
2.1.4.5 Other Reactions of Aliphatic Diisocyanates

2.1.5 Applications of Aliphatic Diisocyanates

2.1.5.1 Polyurethanes

2.1.6 References

2.2 Aromatic Diisocyanates

2.2.1 Introduction

2.2.2 Synthesis

2.2.2.1 Phosgenation of Amines
2.2.2.2 Nonphosgene Processes
2.2.2.3 Aromatic Diisocyanates via Nitrene Intermediates
2.2.2.4 Aromatic Diisocyanates by Coupling of Monoisocyanates or Isocyanate Precursors
2.2.2.5 Miscellaneous Syntheses of Aromatic Diisocyanates

2.2.3 Manufacture of Aromatic Diisocyanates
Contents

2.2.3.1 MDI and Polymeric Isocyanates (PMDI) 385
2.2.3.2 Tolylene Diisocyanate (TDI) 392
2.2.3.3 p-Phenylene Diisocyanate (PPDI) 394
2.2.3.4 Naphthalene Diisocyanate (NDI) 394

2.2.4 Reactions of Aromatic Diisocyanates 395
2.2.4.1 Homopolymerization Reactions 395
2.2.4.2 Copolymerization Reactions 395
2.2.4.3 Cyclopolymerization Reactions 395
2.2.4.4 Addition Polymerization Reactions 396
2.2.4.5 Condensation Polymerization Reactions 410
2.2.4.6 Other Reactions of Aromatic Diisocyanates 416

2.2.5 Applications of Aromatic Diisocyanates 426
2.2.5.1 Polyurethanes 426
2.2.5.2 Poly(urethane ureas) and Polyureas 446
2.2.5.3 Poly(urethane isocyanurates) 450
2.2.5.4 Binder Resins 452
2.2.5.5 Polyamides 455
2.2.5.6 Poly(amide imides) and Polyimides 456

2.2.6 References 456

3 Environmental Considerations 469

3.1 Toxicity 469
3.1.1 Toxicity of Isocyanates 469
3.1.2 Toxicity of Chemicals Used in Isocyanate Manufacture 472
3.1.3 Toxicity of Isocyanate Derived Products 472

3.2 Safety Aspects 473
3.2.1 Storage and Handling of Isocyanates 473
3.2.2 Safety of Isocyanate Production 474
3.2.3 Fire Safety of Isocyanate Derived Products 475

3.3 Environmental Impact 475
3.3.1 Disposal of By-products in Isocyanate Manufacture 475
3.3.2 Disposal of Isocyanate Derived Products 476
3.3.3 Replacement of CFCs in Cellular Products 477

3.4 Isocyanates and Polyurethane Chemicals based on Renewable Resources 478
3.4.1 Isocyanates based on Renewable Resources 478
3.4.2 Polyols based on Renewable Resources 479

3.5 A World without Isocyanates 479

3.6 References 481

Index 483