CONTENTS

Notes on the Text xix

Introduction to Volume 2 1

1 An Introduction to Percolation Theory

1.1 The Problem of Broadbent and Hammersley 4
 1.1.1 The Origins of the Percolation Model 4
 1.1.2 The (Bernoulli) Bond Percolation Model 5
 1.1.3 The (Bernoulli) Site Percolation Model 11
 1.1.4 An Overview of this Chapter 13
 1.1.5 Remarks on the Literature 13

1.2 The Percolation Probability 15
 1.2.1 The High-density Phase 15
 1.2.2 Comparison of Site and Bond Percolation Probabilities 20
 1.2.3 The Percolation Probability for the Bethe Lattice 22
 1.2.4 High-density Series 27
 1.2.5 An Example of High-density Series Analysis 30

1.3 The Cluster-size Distribution 33
 1.3.1 The Low-density Phase 33
 1.3.2 The One-dimensional Percolation Problem 34
 1.3.3 Cluster-size Distribution for the Bethe Lattice 35
 1.3.4 The Decay with n of $P_n(p)$ at Low Density 38
 1.3.5 Low-density Series 40
 1.3.6 The Decay with n of $P_n(p)$ at High Density 45

1.4 Fundamental Problems in Percolation Theory 46
 1.4.1 The Threshold Problem 46
 1.4.2 Counter-examples 47
 1.4.3 Locating Thresholds 49
 1.4.4 Behaviour Near The Percolation Threshold 50
 1.4.5 Structural Issues 51
CONTENTS

1.5 Variations on the Percolation Model 52
 1.5.1 Site–bond Percolation 52
 1.5.2 Polychromatic Percolation and AB Percolation 54
 1.5.3 Topologically Disordered Lattices 58
 1.5.4 Directed Percolation 59
 1.5.5 An Exact Solution of Domany and Kinzel 60
 1.5.6 Invasion Percolation 63
 1.5.7 Long-range Percolation Models 64
 1.5.8 Partially Oriented Percolation Models 66
 1.5.9 Continuum Percolation Models 68
 1.5.10 Other Variations on the Percolation Model 69

References for Chapter 1 71

2 Bernoulli Site Percolation 86
 2.1 Introduction 86
 2.1.1 What We Shall Prove 86
 2.1.2 Some Important Definitions 88
 2.2 Increasing Events 89
 2.2.1 The Harris–FKG Inequality 90
 2.2.2 An Application of the Harris–FKG Inequality 91
 2.2.3 The van den Berg–Kesten Inequality 92
 2.2.4 Bounds on the Distribution of the Wet Set Radius 94
 2.2.5 A Theorem of Aizenman and Newman 97
 2.3 Russo's Formula and its Implications 99
 2.3.1 Pivotal Sites and Russo's Formula 99
 2.3.2 Divergence of the Mean Cluster Size 101
 2.3.3 Bounds on the Slope of the Percolation Probability 104
 2.4 Decay of the Cluster-size Distribution 108
 2.4.1 Tree-graph Inequalities 108
 2.4.2 Decay of $P_n(p)$ 111
 2.5 Men'shikov's Theorem 112
 2.5.1 The Theorem and an Important Lemma 112
 2.5.2 Proof of the Theorem 114
 2.5.3 Sponge-crossing Probabilities 123
 2.5.4 Sequences of Critical Probabilities 125
 2.6 Uniqueness of the Infinite Cluster 126
 2.6.1 Elements of Ergodic Theory 127
 2.6.2 Proof of Uniqueness of the Infinite Cluster 132
CONTENTS

2.6.3 Continuity of the Percolation Probability 136
References for Chapter 2 138

3 Percolation Thresholds 142
3.1 Some Exact Bond Thresholds 142
3.1.1 Overview 142
3.1.2 Dual Lattices in Two Dimensions 143
3.1.3 An Upper Bound for p_L for the Square Lattice 145
3.1.4 A Lower Bound for p_H for the Square Lattice 147
3.1.5 General Implications of Duality 152
3.1.6 The Honeycomb and Triangular Lattices 156
3.1.7 Other Approaches 158
3.2 Some Exact Site Thresholds 160
3.2.1 Overview 160
3.2.2 The Triangular Lattice Site Problem 161
3.2.3 The Mean Number of Clusters Per Lattice Site 163
3.2.4 Matching Lattices 165
3.3 Bounds, Conjectures, and Empirical Formulae 168
3.3.1 Bounds and Expansions 168
3.3.2 Conjectured Relations To Random Walk Return Probabilities 172
3.3.3 Other Conjectures and Empirical Formulae 173
3.4 Numerical Values of Thresholds 175
3.4.1 History 175
3.4.2 Monte Carlo Simulation Algorithms 177
3.4.3 Selected Estimates for Bernoulli Percolation Models 181
3.4.4 Selected Estimates for Other Models 184
References for Chapter 3 188

4 Critical Exponents in Percolation Theory 197
4.1 Exponents from the Cluster-size Distribution 198
4.1.1 The Principal Exponents β, γ, and δ 198
4.1.2 The Triangle Condition and the Upper Critical Dimension 200
4.1.3 The Exponents γ', α, and α' 201
4.1.4 The Gap Exponents Δ, Δ_k, Δ', Δ'_k 206
4.2 Scaling Relations 207
4.2.1 Introduction 207
4.2.2 Stauffer's Scaling Theory 208
4.2.3 Some Evidence in Support of the Scaling Hypothesis 211
4.2.4 A Rigorous Scaling Inequality 215

4.3 Lattice Animal Expansions 216
4.3.1 Expansion of the Cluster-size Distribution 216
4.3.2 Newman's Inequalities 218
4.3.3 Concavity of a Modified Free Energy 221
4.3.4 The Mean-square Cluster Size 224
4.3.5 Continuity of $P_\infty(p)$ at the Percolation Threshold 227

4.4 Exponents from the Pair Connectedness 229
4.4.1 The Low-density Phase and the Exponent ν 229
4.4.2 Moments of the Pair Connectedness 233
4.4.3 The Pair Connectedness at the Threshold 238
4.4.4 Scaling Theory for the Pair Connectedness 241
4.4.5 The High-density Phase and the Exponent ν' 241
4.4.6 The Bethe Lattice and the High-dimension Limit 244
4.4.7 Exact Scaling Relations in Two Dimensions 248

4.5 Renormalization and Finite-size Scaling 252
4.5.1 Basic Concepts 252
4.5.2 Bond Percolation on the Square Lattice 254
4.5.3 Bond Percolation on the Sierpinski Lattice 260
4.5.4 Critical Crossing Probabilities Revisited 261

4.6 Further Developments of Finite-size Scaling 266
4.6.1 Fluctuations in Finite Systems 266
4.6.2 Hyperscaling Inequalities in the High-density Phase 267
4.6.3 The Upper Critical Dimensionality 272

4.7 The Statistical Mechanical Analogy 274
4.7.1 Percolation and the Potts Model 274
4.7.2 Mean-field Theory 280
4.7.3 The Upper Critical Dimension and Hyperscaling 282

4.8 Numerical Values of Critical Exponents 283
4.8.1 'Exact' Values in Two Dimensions 284
4.8.2 Exponent Estimates in Three Dimensions 288
CONTENTS

4.8.3 Critical Exponent Estimates for Directed Percolation 291
4.9 Geometry at the Percolation Threshold 291
4.9.1 The Backbone and its Exponent 291
4.9.2 The Incipient Infinite Cluster 301
References for Chapter 4 303

5 Transport and Conduction in Random Environments 316
5.1 Overview of Chapters 5–7 316
5.2 The Random Resistor Problem 319
5.2.1 The Random Resistor Problem in One Dimension 319
5.2.2 General Resistor Networks 320
5.2.3 Dirichlet’s Principle 321
5.2.4 Thomson’s Principle 323
5.2.5 Rayleigh’s Monotonicity Law 324
5.3 The Conductivity of a Random Resistor Network 325
5.3.1 Definition of the Conductivity of a Random Lattice 326
5.3.2 Rigorous Bounds on the Effective Conductivity 327
5.3.3 Duality Arguments 328
5.3.4 Remarks on Non-linear Random Resistor Problems 332
5.4 The Percolation Conduction Problem 333
5.4.1 The Basic Model 333
5.4.2 Exponent Inequalities 335
5.4.3 Variations 338
5.5 Scaling Arguments 340
5.5.1 Finite-size Scaling 340
5.5.2 Weak Upper Bounds on t 341
5.5.3 Straley’s Scaling Theory 342
5.6 Exact Results for the Bethe Lattice 343
5.6.1 Tree and Branch Conductances 343
5.6.2 Ambiguities in Exponent Definitions 347
5.6.3 Potential Correlations in a Random Bethe Lattice 348
5.7 Uncontrolled Approximations 350
5.7.1 Position-space Renormalization 350
5.7.2 Effective Medium Approximations for the Bond Problem 352
5.7.3 Effective Medium Approximations for the Site Problem 355
5.7.4 Renormalized Effective Medium Approximation 356

5.8 Structural Speculations 358
5.8.1 The Node and Link Model 358
5.8.2 Fractal Structure 359
5.8.3 Series Expansions 361
5.8.4 Flory Arguments 361

5.9 Other Speculations 364
5.9.1 The Alexander–Orbach Conjecture 364
5.9.2 Other Conjectures 366

5.10 Numerical Results 369
References for Chapter 5 372

6 Random Walk in a Random Environment 386

6.1 Temkin’s Model 387
6.1.1 A Random Walk with a Position-dependent Bias 387
6.1.2 Excursions and Recurrence 388
6.1.3 Classification of Possible Behaviours 390
6.1.4 The Arguments of Derrida and Pomeau 392

6.2 First-passage Times in Temkin’s Model 397
6.2.1 The Mean Duration of a Left Excursion 397
6.2.2 Distribution over Environments of Mean Left Excursion Duration 399
6.2.3 First-passage Times to Downwind Sites 401
6.2.4 Renormalization Schemes 405
6.2.5 Variants 406

6.3 Sinai’s Problem 406
6.3.1 Sinai’s Theorem 407
6.3.2 The Asymptotic Distribution of $X_n(\omega)$ 408

6.4 Randomized Master Equations 410
6.4.1 A Master Equation with Random Transition Rates 410
6.4.2 The Formalism of Alexander et al. 411
6.4.3 Disorder Slows Exploration 412
6.4.4 Scaling Arguments 413
6.4.5 Other Treatments 415
6.4.6 Non-universal Limiting Behaviour 416

6.5 Some Generalizations 419
6.5.1 Asymmetric Models 419
6.5.2 Multistate Models 421
6.5.3 Remarks on Higher-dimensional Systems 428

References for Chapter 6 431
CONTENTS

7.8 Variations 494
 7.8.1 Trapping the Ant in the Labyrinth 494
 7.8.2 Random Walk in Random Sceneries 495
 7.8.3 Other Variations 496
References for Chapter 7 496

Errata for the First Printing of Volume 1 503

Additional References for Volume 1 505

Index 516