NETWORK ANALYSIS
WITH APPLICATIONS

Second Edition

William D. Stanley
Old Dominion University

Prentice Hall
Upper Saddle River, New Jersey | Columbus, Ohio
CONTENTS

1 BASIC CIRCUIT LAWS 1
1–1 General Plan of the Book 1
1–2 Basic Electrical Quantities 3
1–3 Circuit Models 9
1–4 Power Conventions 12
1–5 Ohm’s Law and Resistive Power 16
1–6 Kirchoff’s Laws 18
1–7 Equivalent Resistance 21
1–8 Voltage and Current Dividers 25
1–9 Simplified Circuit Analysis 29
1–10 Dependent Sources 32
1–11 PSPICE Examples 35

Drill Problems 40
Derivation Problems 47
Application Problems 47

2 CIRCUIT ANALYSIS METHODS 51
2–1 Single-Loop Circuit 51
2–2 Single Node-Pair Circuit 59
2–3 Source Transformations 67
2–4 Realistic Source Approximations 70
2–5 Mesh Current Analysis 74
2–6 Node Voltage Analysis 80
2-7 Thevenin's and Norton's Theorems 86
2-8 Circuit Analysis with Dependent Sources 96
2-9 Thevenin's and Norton's Theorems with Dependent Sources 99
2-10 Superposition 105
2-11 PSPICE Examples 107
2-12 MATLAB Example 119
 Drill Problems 122
 Derivation Problems 130
 Application Problems 133

3 CAPACITIVE AND INDUCTIVE TRANSIENTS AND EQUIVALENT CIRCUITS 137
3-1 Graphical Significance of Differentiation 137
3-2 Graphical Significance of Integration 143
3-3 Capacitive Transients 149
3-4 Inductive Transients 158
3-5 Combinations of Capacitance and Inductance 166
3-6 Mutual Inductance 172
3-7 Ideal Transformer 178
3-8 PSPICE Examples 188
 Drill Problems 204
 Derivation Problems 212
 Application Problems 214

4 INITIAL, FINAL, AND FIRST-ORDER CIRCUITS 219
4-1 Initial Conditions 219
4-2 Final Conditions 225
4-3 Exponential Function 230
4-4 First-Order Circuits 236
4-5 Timing Intervals with First-Order Circuits 256
4-6 PSPICE Examples 261
4-7 MATLAB Example 270
 Drill Problems 275
 Derivation Problems 282
 Application Problems 283
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>SINUSOIDAL STEADY-STATE ANALYSIS</td>
<td>433</td>
</tr>
<tr>
<td>8-1</td>
<td>General Discussion</td>
<td>433</td>
</tr>
<tr>
<td>8-2</td>
<td>Phasor Representation of Voltages and Currents</td>
<td>435</td>
</tr>
<tr>
<td>8-3</td>
<td>Phasor Combinations of Sinusoids</td>
<td>437</td>
</tr>
<tr>
<td>8-4</td>
<td>Steady-State Impedance</td>
<td>446</td>
</tr>
<tr>
<td>8-5</td>
<td>Derivation of Phasor Voltage-Current Relations</td>
<td>449</td>
</tr>
<tr>
<td>8-6</td>
<td>Complete Sinusoidal Steady-State Circuit Solutions</td>
<td>455</td>
</tr>
<tr>
<td>8-7</td>
<td>Power in ac Circuits</td>
<td>461</td>
</tr>
<tr>
<td>8-8</td>
<td>PSPICE Examples</td>
<td>465</td>
</tr>
<tr>
<td></td>
<td>Drill Problems</td>
<td>469</td>
</tr>
<tr>
<td></td>
<td>Derivation Problems</td>
<td>473</td>
</tr>
<tr>
<td></td>
<td>Application Problems</td>
<td>476</td>
</tr>
<tr>
<td>9</td>
<td>FREQUENCY RESPONSE ANALYSIS AND BODE PLOTS</td>
<td>479</td>
</tr>
<tr>
<td>9-1</td>
<td>Relationship Between Laplace Domain and Phasor Domain</td>
<td>479</td>
</tr>
<tr>
<td>9-2</td>
<td>Steady-State Transfer Function</td>
<td>485</td>
</tr>
<tr>
<td>9-3</td>
<td>Bode Plot Concepts</td>
<td>490</td>
</tr>
<tr>
<td>9-4</td>
<td>Bode Plot Forms</td>
<td>497</td>
</tr>
<tr>
<td>9-5</td>
<td>Second-Order Low-Pass Function</td>
<td>524</td>
</tr>
<tr>
<td>9-6</td>
<td>PSPICE Examples</td>
<td>529</td>
</tr>
<tr>
<td>9-7</td>
<td>MATLAB Examples</td>
<td>535</td>
</tr>
<tr>
<td></td>
<td>Drill Problems</td>
<td>543</td>
</tr>
<tr>
<td></td>
<td>Derivation Problems</td>
<td>546</td>
</tr>
<tr>
<td></td>
<td>Application Problems</td>
<td>549</td>
</tr>
<tr>
<td>10</td>
<td>WAVEFORM ANALYSIS</td>
<td>551</td>
</tr>
<tr>
<td>10-1</td>
<td>dc and rms Values of Periodic Signals</td>
<td>551</td>
</tr>
<tr>
<td>10-2</td>
<td>Step and Ramp Functions</td>
<td>560</td>
</tr>
<tr>
<td>10-3</td>
<td>Shifted Functions</td>
<td>563</td>
</tr>
<tr>
<td>10-4</td>
<td>Synthesis of Complex Waveforms</td>
<td>566</td>
</tr>
</tbody>
</table>
11 FOURIER ANALYSIS

11–1 Fourier Series 598
11–2 Frequency Spectrum Plots 608
11–3 Fourier Series Symmetry Conditions 613
11–4 Common Periodic Waveforms and Their Fourier Series 621
11–5 Fourier Transform 621
11–6 Common Nonperiodic Waveforms and Their Fourier Transforms 628
11–7 Fourier Transform Operations and Spectral Roll-Off 629
11–8 PSPICE Examples 637

General Problems 646
Derivation Problems 648

A Determinants 649
B Complex Algebra 653
C Laplace Transforms 661
D Elements of PSPICE 663

Answers to Selected Odd-Numbered Problems 675
Index 685